HECKE AND STURM BOUNDS FOR HILBERT MODULAR FORMS OVER REAL QUADRATIC FIELDS

被引:3
作者
Burgos Gil, Jose Ignacio [1 ]
Pacetti, Ariel [2 ,3 ]
机构
[1] CSIC UAM UCM UC3, ICMAT, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, DF, Argentina
关键词
THETA-SERIES; POINT-FORMS; NUMBER; ROOT;
D O I
10.1090/mcom/3187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a real quadratic field and OK its ring of integers. Let Gamma be a congruence subgroup of SL2(OK) and M-(k1,M- k2)(Gamma) be the finite dimensional space of Hilbert modular forms of weight (k(1), k(2)) for Gamma. Given a form f(z) is an element of M-(k1,M- k2) (Gamma), how many Fourier coefficients determine it uniquely in such space? This problem was solved by Hecke for classical forms, and Sturm proved its analogue for congruences modulo a prime ideal. The present article solves the same problem for Hilbert modular forms over K. We construct a finite set of indices (which depends on the cusps desingularization of the modular surface attached to Gamma) such that the Fourier coefficients of any form in such set determines it uniquely.
引用
收藏
页码:1949 / 1978
页数:30
相关论文
共 20 条
[1]   On the number of Fourier coefficient that determine a Hilbert modular form [J].
Baba, S ;
Chakraborty, K ;
Petridis, YN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) :2497-2502
[2]  
Chai C.-L., 1990, ANN MATH, V131, P541
[3]  
Cohen H., 1993, Graduate Texts in Mathematics
[4]  
Cox D. A., 1989, PRIMES FORM X2 NY2 F
[5]  
Dieulefait L, 2012, DOC MATH, V17, P953
[6]  
Freitag E., 2003, MODULAR EMBEDDINGS H
[7]  
Garrett P. B., 1990, WADSWORTH BROOKS COL
[8]  
Goren E. Z., 2002, CRM MONOGR SER, V14
[9]  
Hecke E., 1970, MATH WERKE