Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control

被引:129
作者
Sun, Junwei [1 ,2 ]
Wu, Yuanyuan [1 ,2 ]
Cui, Guangzhao [1 ,2 ]
Wang, Yanfeng [1 ,2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Henan Key Lab Informat Based Elect Appliances, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Finite time; Real combination synchronization; Complex-variable chaotic system; Sliding mode control; Unknown parameter; PROJECTIVE SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; NEURAL-NETWORKS; LORENZ SYSTEM; PERTURBATIONS; DELAYS; DESIGN;
D O I
10.1007/s11071-017-3338-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The problem of real combination synchronization between three complex-variable chaotic systems with unknown parameters is investigated by nonsingular terminal sliding mode control in a finite time. Based on the adaptive laws and finite-time stability theory, a nonsingular terminal sliding mode control is designed to ensure the real combination synchronization of three complex-variable chaotic systems in a given finite time. It is theoretically gained that the introduced sliding mode technique has finite-time convergence and stability in both arriving and sliding mode phases. Numerical simulation results are given to show the effectiveness and reliability of the finite-time real combination synchronization.
引用
收藏
页码:1677 / 1690
页数:14
相关论文
共 43 条
[1]   Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique [J].
Aghababa, Mohammad Pourmahmood ;
Khanmohammadi, Sohrab ;
Alizadeh, Ghassem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) :3080-3091
[2]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[3]   Identifiability and identification of chaotic systems based on adaptive synchronization [J].
Dedieu, H ;
Ogorzalek, MJ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :948-962
[4]   Sliding mode control and synchronization of chaotic systems with parametric uncertainties [J].
Feki, Moez .
CHAOS SOLITONS & FRACTALS, 2009, 41 (03) :1390-1400
[5]   Design of coupling for synchronization in time-delayed systems [J].
Ghosh, Dibakar ;
Grosu, Ioan ;
Dana, Syamal K. .
CHAOS, 2012, 22 (03)
[6]   Design of coupling for synchronization of chaotic oscillators [J].
Grosu, Ioan ;
Banerjee, Ranjib ;
Roy, Prodyot K. ;
Dana, Syamal K. .
PHYSICAL REVIEW E, 2009, 80 (01)
[7]   A new impulsive synchronization criterion for T-S fuzzy model and its applications [J].
Hua, Hang ;
Liu, Yang ;
Lu, Jianquan ;
Zhu, Junting .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (20-21) :8826-8835
[8]   Sliding mode control of hyperchaos in Rossler systems [J].
Jang, MJ ;
Chen, CL ;
Chen, CK .
CHAOS SOLITONS & FRACTALS, 2002, 14 (09) :1465-1476
[9]   Sliding mode control for a class of chaotic systems [J].
Konishi, K ;
Hirai, M ;
Kokame, H .
PHYSICS LETTERS A, 1998, 245 (06) :511-517
[10]   Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations [J].
Li, Yingchun ;
Yang, Xinsong ;
Shi, Lei .
NEUROCOMPUTING, 2016, 185 :242-253