Cubic string boundary value problems and Cauchy biorthogonal polynomials

被引:10
作者
Bertola, M. [1 ,2 ]
Gekhtman, M. [3 ]
Szmigielski, J. [4 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[4] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1088/1751-8113/42/45/454006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cauchy biorthogonal polynomials appear in the study of special solutions to the dispersive nonlinear partial differential equation called the Degasperis-Procesi (DP) equation, as well as in certain two-matrix random matrix models. Another context in which such biorthogonal polynomials play a role is the cubic string; a third-order ODE boundary value problem -f''' = zgf which is a generalization of the inhomogeneous string problem studied by Krein. A general class of such boundary value problems going beyond the original cubic string problem associated with the DP equation is discussed under the assumption that the source of inhomogeneity g is a discrete measure. It is shown that by a suitable choice of a generalized Fourier transform associated with these boundary value problems one can establish a Parseval type identity which aligns Cauchy biorthogonal polynomials with certain natural orthogonal systems on L-g(2).
引用
收藏
页数:13
相关论文
共 8 条
[1]   The Cauchy Two-Matrix Model [J].
Bertola, M. ;
Gekhtman, M. ;
Szmigielski, J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (03) :983-1014
[2]  
BERTOLA M, 2008, ARXIV07114082V1NLINS
[3]   A new integrable equation with peakon solutions [J].
Degasperis, A ;
Holm, DD ;
Hone, ANW .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (02) :1463-1474
[4]  
Degasperis A., 1999, Symmetry and perturbation theory, P23
[5]  
Kac I. S., 1974, AM MATH SOC TRANSL S, V2, P103
[6]  
KREIN MG, 1952, DOKL AKAD NAUK SSSR+, V82, P669
[7]  
KREIN MG, 1952, DOKL AKAD NAUK SSSR, V87, P881
[8]  
Lundmark H, 2005, INT MATH RES PAP, P53