Nanotechnology in cell replacement therapies for type 1 diabetes

被引:53
作者
Ernst, Alexander U. [1 ]
Bowers, Daniel T. [1 ]
Wang, Long-Hai [1 ]
Shariati, Kaavian [1 ]
Plesser, Mitchell D. [1 ]
Brown, Natalie K. [1 ]
Mehrabyan, Tigran [1 ]
Ma, Minglin [1 ]
机构
[1] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
关键词
Islet transplantation; Biomaterials; Polymers; ENDOTHELIAL GROWTH-FACTOR; EMBRYONIC STEM-CELLS; REGULATORY T-CELLS; POLY(ETHYLENE GLYCOL) DIACRYLATE; COMPLEMENT RECEPTOR 1; MEDIATED INFLAMMATORY REACTION; HORMONE-RELEASING-HORMONE; NEONATAL PORCINE ISLETS; GLUCAGON-LIKE PEPTIDE-1; RAT PANCREATIC-ISLETS;
D O I
10.1016/j.addr.2019.01.013
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level in this review we thus consider nano technology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 138
页数:23
相关论文
共 441 条
[11]   Mass production of shaped particles through vortex ring freezing [J].
An, Duo ;
Warning, Alex ;
Yancey, Kenneth G. ;
Chang, Chun-Ti ;
Kern, Vanessa R. ;
Datta, Ashim K. ;
Steen, Paul H. ;
Luo, Dan ;
Ma, Minglin .
Nature Communications, 2016, 7
[12]   Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies [J].
An, Duo ;
Ji, Yewei ;
Chiu, Alan ;
Lu, Yen-Chun ;
Song, Wei ;
Zhai, Lei ;
Qi, Ling ;
Luo, Dan ;
Ma, Minglin .
BIOMATERIALS, 2015, 37 :40-48
[13]   Foreign body reaction to biomaterials [J].
Anderson, James M. ;
Rodriguez, Analiz ;
Chang, David T. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :86-100
[14]  
[Anonymous], 2013, J SURG RES, DOI [DOI 10.1016/J.JSS.2012.10.506, 10.1016/j.jss.2012.10.506]
[15]   IMMUNE PRIVILEGE OF THE TESTIS FOR ISLET XENOTRANSPLANTATION (RAT TO MOUSE) [J].
ARRAJAB, A ;
DAWIDSON, IJA ;
HARRIS, RB ;
SENTEMENTES, JT .
CELL TRANSPLANTATION, 1994, 3 (06) :493-498
[16]   Type 1 diabetes [J].
Atkinson, Mark A. ;
Eisenbarth, George S. ;
Michels, Aaron W. .
LANCET, 2014, 383 (9911) :69-82
[17]   Measurements of the effective diffusion coefficient of oxygen in pancreatic islets [J].
Avgoustiniatos, Efstathios S. ;
Dionne, Keith E. ;
Wilson, David F. ;
Yarmush, Martin L. ;
Colton, Clark K. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (19) :6157-6163
[18]  
Avgoustiniatos ES, 1997, ANN NY ACAD SCI, V831, P145
[19]   Co-encapsulation of pancreatic islets and pentoxifylline in alginate-based microcapsules with enhanced immunosuppressive effects [J].
Azadi S.A. ;
Vasheghani-Farahani E. ;
Hashemi-Najafbabadi S. ;
Godini A. .
Progress in Biomaterials, 2016, 5 (2) :101-109
[20]   Polylactide-cyclosporin A nanoparticles for targeted immunosuppression [J].
Azzi, Jamil ;
Tang, Li ;
Moore, Robert ;
Tong, Rong ;
El Haddad, Najib ;
Akiyoshi, Takurin ;
Mfarrej, Bechara ;
Yang, Sunmi ;
Jurewicz, Mollie ;
Ichimura, Takaharu ;
Lindeman, Neal ;
Cheng, Jianjun ;
Abdi, Reza .
FASEB JOURNAL, 2010, 24 (10) :3927-3938