Multiplicity of solutions for a fourth order problem with exponential nonlinearity

被引:14
作者
Davila, Juan [1 ,2 ]
Flores, Isabel [3 ]
Guerra, Ignacio [4 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, CNRS, UMI 2807, Santiago, Chile
[3] Univ Concepcion, Dept Matemat, Fac Ciencias Fis & Matemat, Concepcion, Chile
[4] Univ Santiago Chile, Dept Matemat & CC, Fac Ciencia, Santiago, Chile
关键词
SUPERCRITICAL BIHARMONIC-EQUATIONS; SEMILINEAR ELLIPTIC-EQUATIONS; GROUND-STATES; POSITIVITY;
D O I
10.1016/j.jde.2009.07.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be the unit ball in R-N, N >= 5 and n be the exterior unit normal vector on the boundary. We consider radial. solutions to Delta(2)u = lambda e(u) in B, u = 0 and partial derivative u/partial derivative n = 0 on partial derivative B, where lambda >= 0. We show that there exists a unique lambda(S) > 0 such that if lambda = lambda(S) there is a radial singular solution. If 5 <= N <= 12 then for lambda = lambda(S) there exist infinitely many regular radial solutions and as lambda -> lambda(S) the number of such solutions goes to infinity. If N >= 13 we prove uniqueness of smooth radial solutions. We derive similar results for the same equation with Navier boundary conditions. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3136 / 3162
页数:27
相关论文
共 39 条
[1]  
[Anonymous], 1982, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1993, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
[3]   A semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, G ;
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1226-1258
[4]   Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) :743-770
[5]   Ground states of semilinear elliptic equations:: a geometric approach [J].
Bamón, R ;
Flores, I ;
del Pino, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (05) :551-581
[6]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[7]  
Belicki ~i, 1978, USP MAT NAUK, V33, P95
[8]  
BELICKII GR, 1979, NORMALNYE FORMY INVA
[9]   Positivity preserving property for a class of biharmonic elliptic problems [J].
Berchio, Elvise ;
Gazzola, Filippo ;
Mitidieri, Enzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :1-23
[10]  
Berchio E, 2005, ELECTRON J DIFFER EQ