Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure

被引:0
作者
Ni, Yang [1 ]
Stingo, Francesco C. [2 ]
Baladandayuthapani, Veerabhadran [3 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Univ Florence, Dept Stat Comp Sci Applicat G Parenti, Florence, Italy
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
Covariate-dependent graphs; Markov random fields; Random thresholding; Subject-level inference; Undirected graphs; NONLOCAL PRIOR DENSITIES; DECOMPOSABLE GRAPHS; VARIABLE SELECTION; STOCHASTIC SEARCH; JOINT ESTIMATION; INFERENCE; HETEROGENEITY; LASSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce Bayesian Gaussian graphical models with covariates (GGMx), a class of multivariate Gaussian distributions with covariate-dependent sparse precision matrix. We propose a general construction of a functional mapping from the covariate space to the cone of sparse positive definite matrices, which encompasses many existing graphical models for heterogeneous settings. Our methodology is based on a novel mixture prior for precision matrices with a non-local component that admits attractive theoretical and empirical properties. The flexible formulation of GGMx allows both the strength and the sparsity pattern of the precision matrix (hence the graph structure) change with the covariates. Posterior inference is carried out with a carefully designed Markov chain Monte Carlo algorithm, which ensures the positive definiteness of sparse precision matrices at any given covariates' values. Extensive simulations and a case study in cancer genomics demonstrate the utility of the proposed model.
引用
收藏
页数:29
相关论文
共 54 条
[1]   Objective Bayesian Search of Gaussian Directed Acyclic Graphical Models for Ordered Variables with Non-Local Priors [J].
Altomare, Davide ;
Consonni, Guido ;
La Rocca, Luca .
BIOMETRICS, 2013, 69 (02) :478-487
[2]   Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma [J].
Annunziata, Christina M. ;
Davis, R. Eric ;
Demchenko, Yulia ;
Bellamy, William ;
Gabrea, Ana ;
Zhan, Fenghuang ;
Lenz, Georg ;
Hanamura, Ichiro ;
Wright, George ;
Xiao, Wenming ;
Dave, Sandeep ;
Hurt, Elaine M. ;
Tan, Bruce ;
Zhao, Hong ;
Stephens, Owen ;
Santra, Madhumita ;
Williams, David R. ;
Dang, Lenny ;
Barlogie, Bart ;
Shaughnessy, John D., Jr. ;
Kuehl, W. Michael ;
Staudt, Louis M. .
CANCER CELL, 2007, 12 (02) :115-130
[3]   Molecular Heterogeneity of Multiple Myeloma: Pathogenesis, Prognosis, and Therapeutic Implications [J].
Avet-Loiseau, Herve ;
Magrangeas, Florence ;
Moreau, Philippe ;
Attal, Michel ;
Facon, Thierry ;
Anderson, Kenneth ;
Harousseau, Jean-Luc ;
Munshi, Nikhil ;
Minvielle, Stephane .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (14) :1893-1897
[4]   Joint High-Dimensional Bayesian Variable and Covariance Selection with an Application to eQTL Analysis [J].
Bhadra, Anindya ;
Mallick, Bani K. .
BIOMETRICS, 2013, 69 (02) :447-457
[5]  
Cai Q., 2018, Bayesian Analysis
[6]   Initial genome sequencing and analysis of multiple myeloma [J].
Chapman, Michael A. ;
Lawrence, Michael S. ;
Keats, Jonathan J. ;
Cibulskis, Kristian ;
Sougnez, Carrie ;
Schinzel, Anna C. ;
Harview, Christina L. ;
Brunet, Jean-Philippe ;
Ahmann, Gregory J. ;
Adli, Mazhar ;
Anderson, Kenneth C. ;
Ardlie, Kristin G. ;
Auclair, Daniel ;
Baker, Angela ;
Bergsagel, P. Leif ;
Bernstein, Bradley E. ;
Drier, Yotam ;
Fonseca, Rafael ;
Gabriel, Stacey B. ;
Hofmeister, Craig C. ;
Jagannath, Sundar ;
Jakubowiak, Andrzej J. ;
Krishnan, Amrita ;
Levy, Joan ;
Liefeld, Ted ;
Lonial, Sagar ;
Mahan, Scott ;
Mfuko, Bunmi ;
Monti, Stefano ;
Perkins, Louise M. ;
Onofrio, Robb ;
Pugh, Trevor J. ;
Rajkumar, S. Vincent ;
Ramos, Alex H. ;
Siegel, David S. ;
Sivachenko, Andrey ;
Stewart, A. Keith ;
Trudel, Suzanne ;
Vij, Ravi ;
Voet, Douglas ;
Winckler, Wendy ;
Zimmerman, Todd ;
Carpten, John ;
Trent, Jeff ;
Hahn, William C. ;
Garraway, Levi A. ;
Meyerson, Matthew ;
Lander, Eric S. ;
Getz, Gad ;
Golub, Todd R. .
NATURE, 2011, 471 (7339) :467-472
[7]  
Cheng Jie, 2014, BIOMETRICS
[8]   The joint graphical lasso for inverse covariance estimation across multiple classes [J].
Danaher, Patrick ;
Wang, Pei ;
Witten, Daniela M. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) :373-397
[9]   Classical and/or alternative NF-κB pathway activation in multiple myeloma [J].
Demchenko, Yulia N. ;
Glebov, Oleg K. ;
Zingone, Adriana ;
Keats, Jonathan J. ;
Bergsagel, P. Leif ;
Kuehl, W. Michael .
BLOOD, 2010, 115 (17) :3541-3552
[10]   Sparse graphical models for exploring gene expression data [J].
Dobra, A ;
Hans, C ;
Jones, B ;
Nevins, JR ;
Yao, GA ;
West, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :196-212