Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds

被引:72
作者
He, Jiankang [1 ]
Xia, Peng [1 ]
Li, Dichen [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
melt electrohydrodynamic printing; tissue engineering; scaffold; microfibers; bioprinting; FABRICATION; TISSUES; CONSTRUCTS; HYDROGELS; BONE;
D O I
10.1088/1758-5090/8/3/035008
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The replication of native hierarchical structures into synthetic scaffolds is important to direct cell growth and tissue regeneration. However, most of the existing scaffold strategies lack the capability to simultaneously realize the controlled fabrication of macroscopic geometries as well as microscale architectures with the scale similar to living cells. Here we developed a melt electrohydrodynamic printing platform and verified its feasibility to fabricate three-dimensional (3D) tissue-engineered scaffolds with complex curved geometries and microscale fibrous structures. Melting temperature was studied to stably print poly (epsilon-caprolactone) (PCL) filaments with the size of about 10 mu m, which was precisely stacked into 3D straight walls with fine surface quality. By adjusting stage moving speed and directions, 3D PCL scaffolds with curved contours and predefined fiber orientations or spacing were successfully printed. Biological experiments showed that the printed microscale scaffolds had good biocompatibility and facilitated cellular proliferation and alignment in vitro. It is envisioned that the melt electrohydrodynamic printing can potentially provide an innovative tool to fabricate hierarchical scaffolds that mimic the native tissue architectures in a multiscale level.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs [J].
Bas, Onur ;
De-Juan-Pardo, Elena M. ;
Chhaya, Mohit P. ;
Wunner, Felix M. ;
Jeon, June E. ;
Klein, Travis J. ;
Hutmacher, Dietmar W. .
EUROPEAN POLYMER JOURNAL, 2015, 72 :451-463
[2]   Design and Fabrication of Tubular Scaffolds via Direct Writing in a Melt Electrospinning Mode [J].
Brown, Toby D. ;
Slotosch, Anna ;
Thibaudeau, Laure ;
Taubenberger, Anna ;
Loessner, Daniela ;
Vaquette, Cedryck ;
Dalton, Paul D. ;
Hutmacher, Dietmar W. .
BIOINTERPHASES, 2012, 7 (1-4) :1-16
[3]   Direct Writing By Way of Melt Electrospinning [J].
Brown, Toby D. ;
Dalton, Paul D. ;
Hutmacher, Dietmar W. .
ADVANCED MATERIALS, 2011, 23 (47) :5651-+
[4]   Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns [J].
Chang, Chieh ;
Limkrailassiri, Kevin ;
Lin, Liwei .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[5]   Printing and Prototyping of Tissues and Scaffolds [J].
Derby, Brian .
SCIENCE, 2012, 338 (6109) :921-926
[6]   Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing [J].
Duan, YongQing ;
Huang, YongAn ;
Yin, ZhouPing ;
Bu, NingBin ;
Dong, WenTao .
NANOSCALE, 2014, 6 (06) :3289-3295
[7]  
Dvir T, 2011, NAT NANOTECHNOL, V6, P13, DOI [10.1038/nnano.2010.246, 10.1038/NNANO.2010.246]
[8]   The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning [J].
Fuh, Yiin-Kuen ;
Wu, Yun-Chung ;
He, Zhe-Yu ;
Huang, Zih-Ming ;
Hu, Wei-Wen .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 62 :879-887
[9]   Combined additive manufacturing approaches in tissue engineering [J].
Giannitelli, S. M. ;
Mozetic, P. ;
Trombetta, M. ;
Rainer, A. .
ACTA BIOMATERIALIA, 2015, 24 :1-11
[10]   Electrospinning of nanofibrous scaffolds with continuous structure and material gradients [J].
He, Jiankang ;
Qin, Ting ;
Liu, Yaxiong ;
Li, Xiang ;
Li, Dichen ;
Jin, Zhongmin .
MATERIALS LETTERS, 2014, 137 :393-397