Design of sparse linear arrays by Monte Carlo importance sampling

被引:9
|
作者
Kay, S [1 ]
Saha, S [1 ]
机构
[1] Univ Rhode Isl, Dept Elect & Comp Engn, Kingston, RI 02881 USA
关键词
acoustic imaging; global optimization methods; linear arrays; Monte Carlo methods;
D O I
10.1109/JOE.2002.804325
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The formation of acoustic images in real-time requires an enormous computational burden. To reduce this demand the use of sparse arrays for beamforming is mandated. The design of these arrays for adequate mainlobe width and low sidelobe level is a difficult nonlinear optimization problem. A new approach to the joint optimization of sensor placement and shading weights is discussed. Based on the concept of importance sampling an optimization method is presented and some examples given to illustrate its effectiveness.
引用
收藏
页码:790 / 799
页数:10
相关论文
共 50 条
  • [1] Design of sparse linear arrays by Monte Carlo importance sampling
    Kay, S
    OCEANS 2000 MTS/IEEE - WHERE MARINE SCIENCE AND TECHNOLOGY MEET, VOLS 1-3, CONFERENCE PROCEEDINGS, 2000, : 1501 - 1507
  • [2] Monte Carlo Source Enumeration for Sparse Arrays
    Liu, Chun-Lin
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [3] IMPORTANCE SAMPLING IN MONTE-CARLO ANALYSES
    CLARK, CE
    OPERATIONS RESEARCH, 1961, 9 (05) : 603 - 620
  • [4] Monte Carlo and importance sampling estimators of CoVaR
    Jiang, Guangxin
    Hao, Jianshu
    Sun, Tong
    OPERATIONS RESEARCH LETTERS, 2025, 60
  • [5] Monte Carlo, maximum entropy and importance sampling
    Levine, RD
    CHEMICAL PHYSICS, 1998, 228 (1-3) : 255 - 264
  • [6] Efficiency and accuracy of Monte Carlo (importance) sampling
    Waarts, PH
    SAFETY AND RELIABILITY, VOLS 1 AND 2, 2003, : 1663 - 1670
  • [7] Efficient importance sampling function design for sequential Monte Carlo PHD filter
    Yoon, Ju Hong
    Kim, Du Yong
    Yoon, Kuk-Jin
    SIGNAL PROCESSING, 2012, 92 (09) : 2315 - 2321
  • [8] Hybrid importance sampling Monte Carlo approach for yield estimation in circuit design
    Tyagi, Anuj K.
    Jonsson, Xavier
    Beelen, Theo G. J.
    Schilders, Wil H. A.
    JOURNAL OF MATHEMATICS IN INDUSTRY, 2018, 8
  • [9] Fourier Analysis of Correlated Monte Carlo Importance Sampling
    Singh, Gurprit
    Subr, Kartic
    Coeurjolly, David
    Ostromoukhov, Victor
    Jarosz, Wojciech
    COMPUTER GRAPHICS FORUM, 2020, 39 (01) : 7 - 19
  • [10] Spatial Monte Carlo integration with annealed importance sampling
    Yasuda, Muneki
    Sekimoto, Kaiji
    PHYSICAL REVIEW E, 2021, 103 (05)