Blowup criterion for Navier-Stokes equation in critical Besov space with spatial dimensions d ≥ 4

被引:2
作者
Li, Kuijie [1 ]
Wang, Baoxiang [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2019年 / 36卷 / 06期
基金
美国国家科学基金会;
关键词
Navier-Stokes equation; Blowup criterion; Critical Besov spaces; Higher spatial dimensions; SUITABLE WEAK SOLUTIONS; PARTIAL REGULARITY; GLOBAL-SOLUTIONS; ILL-POSEDNESS; PROOF; LP;
D O I
10.1016/j.anihpc.2019.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the blowup criterion for mild solution to the incompressible Navier-Stokes equation in higher spatial dimensions d >= 4. By establishing an epsilon regularity criterion in the spirit of [11], we show that if the mild solution u with initial data in (B) over dot(p,q)(-1+d/p)(R-d), d < p, q < infinity becomes singular at a finite time T-*, then lim sup(t -> T*) parallel to u(t) parallel to ((B) over dotp,q-1+d/p(Rd)) = infinity. The corresponding result in 3D case has been obtained in [24]. As a by-product, we also prove a regularity criterion for the Leray-Hopf solution in the critical Besov space, which generalizes the results in [17], where blowup criterion in critical Lebesgue space L-d (R-d) is addressed. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1679 / 1707
页数:29
相关论文
共 56 条
[1]   Global Weak Besov Solutions of the Navier-Stokes Equations and Applications [J].
Albritton, Dallas ;
Barker, Tobias .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (01) :197-263
[2]   BLOW-UP CRITERIA FOR THE NAVIER-STOKES EQUATIONS IN NON-ENDPOINT CRITICAL BESOV SPACES [J].
Albritton, Dallas .
ANALYSIS & PDE, 2018, 11 (06) :1415-1456
[3]  
[Anonymous], 1983, MONOGRAPHS MATH
[4]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[5]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[6]   Uniqueness Results for Weak Leray-Hopf Solutions of the Navier-Stokes System with Initial Values in Critical Spaces [J].
Barker, T. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (01) :133-160
[7]   A necessary condition of potential blowup for the Navier-Stokes system in half-space [J].
Barker, T. ;
Seregin, G. .
MATHEMATISCHE ANNALEN, 2017, 369 (3-4) :1327-1352
[8]  
Barker T., 2017, ARXIV170306841
[9]  
Bergh J., 1976, Interpolation spaces. An introduction
[10]   Ill-posedness of the Navier-Stokes equations in a critical space in 3D [J].
Bourgain, Jean ;
Pavlovic, Natasa .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2233-2247