Supramolecular fluorescence sensor for liquefied petroleum gas

被引:6
|
作者
Zhan, Yi-Yang [1 ]
Liao, Jingyuan [1 ]
Kajita, Mizuho [2 ]
Kojima, Tatsuo [1 ]
Takahashi, Satoshi [1 ]
Takaya, Tomohisa [2 ]
Iwata, Koichi [2 ]
Hiraoka, Shuichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Dept Basic Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[2] Gakushuin Univ, Fac Sci, Dept Chem, Toshima Ku, 1-5-1 Mejiro, Tokyo 1718588, Japan
关键词
LPG; ENCAPSULATION; NANOPARTICLES; MOLECULES; CHEMISTRY; STORAGE; GUESTS; FILM;
D O I
10.1038/s42004-019-0212-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sensing systems of nonpolar gas molecules without functional groups such as natural gas and liquefied petroleum gas (LPG) remain difficult to develop because of lacking selective detection of such molecules over other gas molecules. Here we report a supramolecular fluorescence sensor for LPG using a 2-nm-sized cube-shaped molecular container i.e. a nanocube self-assembled from six molecules of gear-shaped amphiphiles (GSA) in water. The nanocube selectively encapsulates LPG, while it does not bind other gas molecules. Upon encapsulation of LPG in the nanocube, the fluorescence from the nanocube is enhanced by 3.9 times, which is caused by the restricted motion of the aromatic rings of GSA in the nanocube based on aggregation-induced emission. Besides the high selectivity, high sensitivity, quick response, high stability of the nanocube for LPG, and easy preparation of GSA satisfy the requirement for its practical use for an LPG sensor.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Hybrid Catalysts for Liquefied Petroleum Gas Synthesis from Syngas
    Ma Xiangang
    Ge Qingjie
    Fang Chuanyan
    Ma Junguo
    Xu Hengyong
    CHINESE JOURNAL OF CATALYSIS, 2010, 31 (12) : 1501 - 1506
  • [32] The Research and Motor octane numbers of Liquefied Petroleum Gas (LPG)
    Morganti, Kai J.
    Foong, Tien Mun
    Brear, Michael J.
    da Silva, Gabriel
    Yang, Yi
    Dryer, Frederick L.
    FUEL, 2013, 108 : 797 - 811
  • [33] Reducing Energy Demand in Liquefied Petroleum Gas Evaporation Processes
    Englart, Sebastian
    Jedlikowski, Andrzej
    Cepinski, Wojciech
    Skrzycki, Maciej
    ROCZNIK OCHRONA SRODOWISKA, 2020, 22 (01): : 475 - 487
  • [34] MFI membranes for the separation of liquefied petroleum gas from methane
    Neubauer, K.
    Wohlrab, S.
    Paschek, D.
    Lubenau, U.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 1138 - 1140
  • [35] Simulation for high efficiency liquefied petroleum gas engine development
    Lee, SW
    Daish, Y
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2004, 218 (D10) : 1201 - 1208
  • [36] Domestic liquefied petroleum gas: Are we using a kitchen bomb?
    Paltiwal, G.
    Agrawal, K.
    Srivastava, R. K.
    Sharma, S.
    BURNS, 2014, 40 (06) : 1219 - 1224
  • [37] Ignition of liquefied petroleum gas/air mixtures by electric sparks
    Munteanu, V
    Musat, NG
    Razus, D
    Oancea, D
    REVISTA DE CHIMIE, 2005, 56 (09): : 951 - 954
  • [38] Effect of Port Premixed Liquefied Petroleum Gas on the Engine Characteristics
    Geo, V. Edwin
    Sonthalia, Ankit
    Nagarajan, G.
    Nagalingam, B.
    Aloui, Fethi
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (11):
  • [39] Sustainability in the design of liquefied petroleum gas systems used in buildings
    Farouq, Amna Amer
    Al-Obaidi, Basim H. K.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF MATERIALS, 2022, 31 (01) : 248 - 255
  • [40] Carbon footprints of Liquefied Petroleum Gas transportation in the Indian Himalaya
    Bisht, Sapna
    Sharma, Subrat
    JOURNAL OF CLEANER PRODUCTION, 2018, 196 : 1065 - 1072