Trivalent vertex-transitive bi-dihedrants

被引:11
作者
Zhang, Mi-Mi [1 ]
Zhou, Jin-Xin [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-dihedrant; Cayley graph; Vertex-transitive; CAYLEY-GRAPHS; CLASSIFICATION; AUTOMORPHISMS; ISOMORPHISMS;
D O I
10.1016/j.disc.2017.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is said to be a bi-Cayley graph over a group H if it admits H as a semiregular automorphism group with two vertex-orbits. A bi-dihedrant is a bi-Cayley graph over a dihedral group. In this paper, it is shown that every connected trivalent edge-transitive bi-dihedrant is also vertex-transitive, and then we present a classification of trivalent arc-transitive bi-dihedrants, and study the Cayley property of trivalent vertex-transitive bi-dihedrants. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1757 / 1772
页数:16
相关论文
共 36 条
[1]   Partial sum quadruples and bi-Abelian digraphs [J].
Araluze, Alexander ;
Kovacs, Istvan ;
Kutnar, Klavdija ;
Martinez, Luis ;
Marusic, Dragan .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (08) :1811-1831
[2]   Edge connectivity in difference graphs and some new constructions of partial sum families [J].
Araluze, Alexander ;
Kutnar, Klavdija ;
Martinez, Luis ;
Marusic, Dragan .
EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (03) :352-360
[3]   Isomorphisms of finite semi-Cayley graphs [J].
Arezoomand, Majid ;
Taeri, Bijan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (04) :715-730
[4]  
Biggs N.L., 1993, Algebraic graph theory
[5]  
Bondy J. A., 1976, Graph theory with applications
[6]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[7]  
Bouwer I.Z., 1988, THE FOSTER CENSUS
[8]  
Boyle H., CUBIC SYMMETRIC GRAP
[9]  
Conder M., 2002, J. Comb. Math. Comb. Comput., V40, P41
[10]   s-regular cyclic coverings of the three-dimensional hypercube Q3 [J].
Feng, YQ ;
Wang, KS .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (06) :719-731