A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density

被引:116
作者
He, Liang [1 ,2 ]
Liu, Yu [1 ,2 ]
Li, Chunyang [1 ,2 ]
Yang, Dezhi [1 ,2 ]
Wang, Weigang [1 ,2 ]
Yan, Wenqi [1 ,2 ]
Zhou, Weibin [1 ,2 ]
Wu, Zhixian [1 ,2 ]
Wang, Lili [1 ,2 ]
Huang, Qinghong [1 ,2 ]
Zhu, Yusong [1 ,2 ]
Chen, Yuhui [1 ,2 ]
Fu, Lijun [1 ,2 ,3 ]
Hou, Xianhua [3 ]
Wu, Yuping [1 ,2 ,3 ]
机构
[1] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Coll Energy Sci & Engn, 30 Puzhu Rd S, Nanjing 211800, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Inst Adv Mat, 30 Puzhu Rd S, Nanjing 211800, Jiangsu, Peoples R China
[3] South China Normal Univ, 55 West Zhongshan Rd, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
corncob-derived carbon; hierarchical porous structure; energy density; zinc; aqueous hybrid supercapacitors; HIGH-PERFORMANCE SUPERCAPACITORS; HIERARCHICAL POROUS CARBON; CAPACITY BATTERY ANODES; FUNCTIONALIZED GRAPHENE; ELECTRODE MATERIALS; SURFACE-AREA; STORAGE; NITROGEN; HYDROGEN; CONVERSION;
D O I
10.1021/acsaem.9b00981
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low-cost supercapacitors with high energy densities have attracted great research attention, since it would broaden the application of capacitors. Increasing the capacitance is one principle to obtain a high energy density of a supercapacitor. In this study, a low cost aqueous Zn-based hybrid supercapacitor (AZHS) with high energy density is achieved using an actived carbon derived from corncob (denoted as ACC) as the positive electrode, zinc metal as the negative electrode, and the 2 M ZnSO4 electrolyte. The actived carbon is prepared with a facile calcination-activation process, and it exhibits high specific surface area (2619 m(2) g(-1)). Though without extra heteroatom doping, ACC demonstrates a superb specific capacitance in acidic, alkaline and neutral electrolytes. The assembled AZHS exhibits a high energy density of 94 W h kg(-1) at 68 W kg(-1) in a potential window of 0.2-1.8 V, and an excellent cycle stability with only 1.8% capacitance decay is obtained after 10 000 cycles at 5 A g(-1). These results suggest that a low cost supercapacitor with high energy density can be achieved by a hybrid system design using electrodes with high capacitance.
引用
收藏
页码:5835 / +
页数:15
相关论文
共 64 条
[1]   Nitrogen-doped activated carbons derived from a co-polymer for high supercapacitor performance [J].
Alabadi, Akram ;
Yang, Xinjia ;
Dong, Zehua ;
Li, Zhen ;
Tan, Bien .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (30) :11697-11705
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   From dead leaves to high energy density supercapacitors [J].
Biswal, Mandakini ;
Banerjee, Abhik ;
Deo, Meenal ;
Ogale, Satishchandra .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1249-1259
[4]   Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials [J].
Bleda-Martinez, M. J. ;
Perez, J. M. ;
Linares-Solana, A. ;
Morallon, E. ;
Cazorla-Amoros, D. .
CARBON, 2008, 46 (07) :1053-1059
[5]   The Influence of Pore Structure and Surface Groups on the Performance of High Voltage Electrochemical Double Layer Capacitors Containing Adiponitrile-Based Electrolyte [J].
Brandt, A. ;
Balducci, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) :A2053-A2059
[6]   Functionalized graphene nanosheets decorated on carbon nanotubes networks for high performance supercapacitors [J].
Ding, Bing ;
Guo, Dong ;
Wang, Yahui ;
Wu, Xiaoliang ;
Fan, Zhuangjun .
JOURNAL OF POWER SOURCES, 2018, 398 :113-119
[7]   Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors [J].
Dong, Liubing ;
Ma, Xinpei ;
Li, Yang ;
Zhao, Ling ;
Liu, Wenbao ;
Cheng, Junye ;
Xu, Chengjun ;
Li, Baohua ;
Yang, Quan-Hong ;
Kang, Feiyu .
ENERGY STORAGE MATERIALS, 2018, 13 :96-102
[8]   Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications [J].
Du, Xuan ;
Zhao, Wei ;
Wang, Yi ;
Wang, Chengyang ;
Chen, Mingming ;
Qi, Tao ;
Hua, Chao ;
Ma, Mingguo .
BIORESOURCE TECHNOLOGY, 2013, 149 :31-37
[9]   Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors [J].
Eftekhari, Ali ;
Fang, Baizeng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (40) :25143-25165
[10]   Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte [J].
Gao, Qiang ;
Demarconnay, Laurent ;
Raymundo-Pinero, Encarnacion ;
Beguin, Francois .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9611-9617