Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries

被引:61
作者
Asif, Muhammad [1 ,3 ]
Rashad, Muhammad [4 ]
Ali, Zeeshan [2 ,3 ]
Qiu, Hailong [1 ,3 ]
Li, Wei [1 ,3 ]
Pan, Lujun [5 ]
Hou, Yanglong [1 ,2 ,3 ]
机构
[1] Beijing Innovat Ctr Engn Sci & Adv Technol BIC Ea, Beijing, Peoples R China
[2] Beijing Key Lab Magnetoelect Mat & Devices, Beijing, Peoples R China
[3] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian 116023, Peoples R China
[5] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
基金
国家重点研发计划;
关键词
Magnesium/lithium hybrid ion battery; Manganese dioxide; Electrochemical properties; Metal doping; Energy storage; HYDROTHERMAL SYNTHESIS; ELECTRODES; SYSTEMS; NANOSTRUCTURES; DELAMINATION; PERFORMANCE; ALPHA-MNO2; NANOWIRES; SPECTRA; CARBON;
D O I
10.1016/j.mtener.2018.08.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High performance electrode materials are under tremendous focus for rechargeable energy storage systems. Herein, we report Ni-doped manganese oxide/CNT nanostructures as an effective cathode for ultra-long life magnesium/lithium hybrid ion battery (MLIB). The synthesized composite exhibited urchin like morphology, assembled with MnO2 nanoflakes. Electrochemical characterizations reveal excellent rate capacities with a maximum specific capacity of 175 mA h g(-1) at a current density of 20 mA g(-1). Dendrites free MLIB exhibits stable cycling of 3000 cycles with capacity retention of 87% at a current density of 1 A g(-1). Moreover, the influence of cutoff voltages on specific capacities and coulombic efficiencies has been analyzed. Ex-situ XRD and postmortem SEM/EDS analysis illustrates charge-discharge mechanism, and electrode/electrolyte redox reactions at different electrode potentials. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 57 条
[1]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727
[2]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[3]   Effect of Cl- and TFSI- anions on dual electrolyte systems in a hybrid Mg/Li4Ti5O12 battery [J].
Bitenc, Jan ;
Firm, Marko ;
Vitanova, Anna Randon ;
Dominko, Robert .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 76 :29-33
[4]   One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method [J].
Chen, Ying ;
Zhang, Yong ;
Geng, Dognsheng ;
Li, Ruying ;
Hong, Hanlie ;
Chen, Jingzhong ;
Sun, Xueliang .
CARBON, 2011, 49 (13) :4434-4442
[5]   Role of Cu in Mo6S8 and Cu Mixture Cathodes for Magnesium Ion Batteries [J].
Choi, Seung-Hyun ;
Kim, Jeom-Soo ;
Woo, Sang-Gil ;
Cho, Woosuk ;
Choi, Sun Yong ;
Choi, Jungkyu ;
Lee, Kyu-Tae ;
Park, Min-Sik ;
Kim, Young-Jun .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (12) :7016-7024
[6]   Hybrid Mg2+/Li+ Battery with Long Cycle Life and High Rate Capability [J].
Gao, Tao ;
Han, Fudong ;
Zhu, Yujie ;
Suo, Liumin ;
Luo, Chao ;
Xu, Kang ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2015, 5 (05)
[7]   Improved electrolyte solutions for rechargeable magnesium batteries [J].
Gofer, Y ;
Chusid, O ;
Gizbar, H ;
Viestfrid, Y ;
Gottlieb, HE ;
Marks, V ;
Aurbach, D .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (05) :A257-A260
[8]   New interpretations of XPS spectra of nickel metal and oxides [J].
Grosvenor, Andrew P. ;
Biesinger, Mark C. ;
Smart, Roger St. C. ;
McIntyre, N. Stewart .
SURFACE SCIENCE, 2006, 600 (09) :1771-1779
[9]   Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals:: Determinant influence of oxidants [J].
Hu, Chi-Chang ;
Wu, Yung-Tai ;
Chang, Kuo-Hsin .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2890-2894
[10]   Raman spectra of birnessite manganese dioxides [J].
Julien, C ;
Massot, M ;
Baddour-Hadjean, R ;
Franger, S ;
Bach, S ;
Pereira-Ramos, JP .
SOLID STATE IONICS, 2003, 159 (3-4) :345-356