Cloning and Characterization of a Chondroitin AC Exolyase from Arthrobacter sp. SD-04

被引:7
作者
Chen, Lu-Zhou [1 ]
Shi, Chu-Qi [1 ]
Yin, Feng-Xin [1 ]
Wang, Feng-Shan [1 ]
Sheng, Ju-Zheng [1 ,2 ]
机构
[1] Shandong Univ, Sch Pharmaceut Sci, Inst Biochem & Biotechnol Drug, Key Lab Chem Biol Nat Prod,Minist Educ, Jinan 250012, Shandong, Peoples R China
[2] Shandong Univ, Natl Glycoengn Res Ctr, Jinan 250012, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Glycosaminoglycan; Chondroitin sulfate; Chondroitin AC exolyase; Arthrobacter sp; Escherichia coli; Substrate specificity; Enzymatic characterization; SULFATE; GLYCOSAMINOGLYCANS; LYASE; CLASSIFICATION; DEGRADATION; EXPRESSION; FEATURES;
D O I
10.1007/s12033-019-00208-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycosaminoglycans (GAGs) and their low-molecular weight derivates have received considerable interest in terms of their potential clinical applications, and display a wide variety of pharmacological and pharmacokinetic properties. Structurally distinct GAG chains can be prepared by enzymatic depolymerization. A variety of bacterial chondroitin sulfate (CS) lyases have been identified, and have been widely used as catalysts in this process. Here, we identified a putative chondroitin AC exolyase gene, AschnAC, from an Arthrobacter sp. strain found in a CS manufacturing workshop. We expressed the enzyme, AsChnAC, recombinantly in Escherichia coli, then purified and characterized it in vitro. The enzyme indeed displayed exolytic cleavage activity toward HA and various CSs. Removing the putative N-terminal secretion signal peptide of AsChnAC improved its expression level in E. coli while maintaining chondroitin AC exolyase activity. This novel catalyst exhibited its optimal activity in the absence of added metal ions. AsChnAC has potential applications in preparation of low-molecular weight GAGs, making it an attractive catalyst for further investigation.
引用
收藏
页码:791 / 800
页数:10
相关论文
共 38 条
[1]   Structural features of low-molecular-weight heparins affecting their affinity to antithrombin [J].
Bisio, Antonella ;
Vecchietti, Davide ;
Citterio, Laura ;
Guerrini, Marco ;
Raman, Rahul ;
Bertini, Sabrina ;
Eisele, Giorgio ;
Naggi, Annamaria ;
Sasisekharan, Ram ;
Torri, Giangiacomo .
THROMBOSIS AND HAEMOSTASIS, 2009, 102 (05) :865-873
[2]   Protein structure homology modeling using SWISS-MODEL workspace [J].
Bordoli, Lorenza ;
Kiefer, Florian ;
Arnold, Konstantin ;
Benkert, Pascal ;
Battey, James ;
Schwede, Torsten .
NATURE PROTOCOLS, 2009, 4 (01) :1-13
[3]   Role of arginine 292 in the catalytic activity of chondroitin AC lyase from Flavobacterium heparinum [J].
Capila, I ;
Wu, Y ;
Rethwisch, DW ;
Matte, A ;
Cygler, M ;
Linhardt, RJ .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2002, 1597 (02) :260-270
[4]   The PMDB Protein Model Database [J].
Castrignano, Tiziana ;
De Meo, Paolo D'Onorio ;
Cozzetto, Domenico ;
Talamo, Ivano Giuseppe ;
Tramontano, Anna .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D306-D309
[5]   Chemoenzymatic synthesis of glycosaminoglycans: Re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains [J].
DeAngelis, Paul L. ;
Liu, Jian ;
Linhardt, Robert J. .
GLYCOBIOLOGY, 2013, 23 (07) :764-777
[6]   ENZYMATIC DEGRADATION OF GLYCOSAMINOGLYCANS [J].
ERNST, S ;
LANGER, R ;
COONEY, CL ;
SASISEKHARAN, R .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 30 (05) :387-444
[7]   Expression, Purification and Characterization of Chondroitinase AC II from Marine Bacterium Arthrobacter sp. CS01 [J].
Fang, Yangtao ;
Yang, Suxiao ;
Fu, Xiaodan ;
Xie, Wancui ;
Li, Li ;
Liu, Zhemin ;
Mou, Haijin ;
Zhu, Changliang .
MARINE DRUGS, 2019, 17 (03)
[8]   The Structure of Glycosaminoglycans and their Interactions with Proteins [J].
Gandhi, Neha S. ;
Mancera, Ricardo L. .
CHEMICAL BIOLOGY & DRUG DESIGN, 2008, 72 (06) :455-482
[9]   Structural and mechanistic classification of uronic acid-containing polysaccharide lyases [J].
Garron, Marie-Line ;
Cygler, Miroslaw .
GLYCOBIOLOGY, 2010, 20 (12) :1547-1573
[10]  
Gibson DG, 2009, NAT METHODS, V6, P343, DOI [10.1038/nmeth.1318, 10.1038/NMETH.1318]