Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging

被引:58
作者
Schouten, Tijn M. [1 ,2 ,3 ]
Koini, Marisa [4 ]
de Vos, Frank [1 ,2 ,3 ]
Seiler, Stephan [4 ]
de Rooij, Mark [1 ,3 ]
Lechner, Anita [4 ]
Schmidt, Reinhold [4 ]
van den Heuvel, Martijn [5 ]
van der Grond, Jeroen [2 ]
Rombouts, Serge A. R. B. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Psychol, Leiden, Netherlands
[2] Leiden Univ, Dept Radiol, Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Leiden, Netherlands
[4] Med Univ Graz, Dept Neurol, Graz, Austria
[5] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Dept Psychiat, Utrecht, Netherlands
关键词
Alzheimer's disease; Classification; MRI; Diffusion; DTI; REGULARIZATION; IDENTIFICATION; REGRESSION; SELECTION; SCANS; MRI;
D O I
10.1016/j.neuroimage.2017.03.025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MM to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MM.
引用
收藏
页码:476 / 481
页数:6
相关论文
共 38 条
[1]  
American Psychiatric Association, 2000, FORCE DSM 4 DSM 4 T, V4th ed., DOI 10.1176/dsm10.1176/appi.books.9780890420249.dsm-iv-tr
[2]  
Basser P.J., 1994, ESTIMATION EFFECTIVE
[3]   Modelling with independent components [J].
Beckmann, Christian F. .
NEUROIMAGE, 2012, 62 (02) :891-901
[4]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[5]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781
[6]   Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) [J].
Dai, Zhengjia ;
Yan, Chaogan ;
Wang, Zhiqun ;
Wang, Jinhui ;
Xia, Mingrui ;
Li, Kuncheng ;
He, Yong .
NEUROIMAGE, 2012, 59 (03) :2187-2195
[7]  
de Vos F., 2016, HUM BRAIN MAPP
[8]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[9]   Robust Automated Detection of Microstructural White Matter Degeneration in Alzheimer's Disease Using Machine Learning Classification of Multicenter DTI Data [J].
Dyrba, Martin ;
Ewers, Michael ;
Wegrzyn, Martin ;
Kilimann, Ingo ;
Plant, Claudia ;
Oswald, Annahita ;
Meindl, Thomas ;
Pievani, Michela ;
Bokde, Arun L. W. ;
Fellgiebel, Andreas ;
Filippi, Massimo ;
Hampel, Harald ;
Kloeppel, Stefan ;
Hauenstein, Karlheinz ;
Kirste, Thomas ;
Teipel, Stefan J. .
PLOS ONE, 2013, 8 (05)
[10]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874