Quasilocal first law of black hole dynamics from local Lorentz transformations

被引:1
作者
Chatterjee, Ayan [1 ]
Ghosh, Avirup [2 ,3 ]
机构
[1] Cent Univ Himachal Pradesh, Dept Phys & Astron Sci, Dharamshala 176215, India
[2] Saha Inst Nucl Phys, Theory Div, 1-AF Bidhan Nagar, Kolkata 700064, India
[3] Indian Inst Technol, Gandhinagar 382355, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2018年 / 78卷 / 07期
关键词
CONSERVED CHARGES; ISOLATED HORIZONS; SYMMETRIES; SPACETIME; GRAVITY; ENTROPY;
D O I
10.1140/epjc/s10052-018-6021-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Quasilocal formulations of black hole are of immense importance since they reveal the essential and minimal assumptions required for a consistent description of black hole horizon, without relying on the asymptotic boundary conditions on fields. Using the quasilocal formulation of Isolated Horizons, we construct the Hamiltonian charges corresponding to local Lorentz transformations on a spacetime admitting isolated horizon as an internal boundary. From this construction, it arises quite generally that the area of the horizon of an isolated black hole is the Hamiltonian charge for local Lorentz boost on the horizon. Using this argument further, it is shown that, observers at a fixed proper distance l(0), very close to the horizon, may define a notion of horizon energy given by E = A/8 pi Gl(0), the surface gravity is given by kappa = 1/l(0), and consequently, the first law can be written in the quasilocal setting as delta E = (kappa/8 pi G)delta A.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity [J].
Adami, H. ;
Setare, M. R. .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (04)
[2]  
[Anonymous], PHYS REV D
[3]  
[Anonymous], ARXIV12055325
[4]   Conserved charges for gravity with locally anti-de Sitter asymptotics [J].
Aros, R ;
Contreras, M ;
Olea, R ;
Troncoso, R ;
Zanelli, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (08) :1647-1650
[5]   Conserved charges for even dimensional asymptotically AdS gravity theories [J].
Aros, R ;
Contreras, M ;
Olea, R ;
Troncoso, R ;
Zanelli, J .
PHYSICAL REVIEW D, 2000, 62 (04) :1-7
[6]   Generic isolated horizons and their applications [J].
Ashtekar, A ;
Beetle, C ;
Dreyer, O ;
Fairhurst, S ;
Krishnan, B ;
Lewandowski, J ;
Wisniewski, J .
PHYSICAL REVIEW LETTERS, 2000, 85 (17) :3564-3567
[7]   Isolated horizons: a generalization of black hole mechanics [J].
Ashtekar, A ;
Beetle, C ;
Fairhurst, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (02) :L1-L7
[8]   Isolated horizons: Hamiltonian evolution and the first law [J].
Ashtekar, A ;
Fairhurst, S ;
Krishnan, B .
PHYSICAL REVIEW D, 2000, 62 (10)
[9]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[10]   Local symmetries of non-expanding horizons [J].
Basu, Rudranil ;
Chatterjee, Ayan ;
Ghosh, Amit .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (23)