Divergence of spherical general terms of double Fourier series

被引:1
作者
Getsadze, Rostom [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
关键词
double Fourier series; spherical general terms; divergence almost everywhere;
D O I
10.1007/s00041-006-6045-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the following theorem: For arbitrary epsilon > 0 there exists a nonnegative function g is an element of L[0, 1](2) such that supp g subset of [0, epsilon](2) and lim sup(R-->infinity)\Sigma(i2+j2=R2) a(i,j)(g)w(i)(x)w(j)(y)\ = infinity almost everywhere on [0, 1](2), where {w(i) (x)w(j)(y)}(i,j=1)(infinity) = is the double Walsh-Paley system. This statement remains true also for the double trigonometric system.
引用
收藏
页码:597 / 604
页数:8
相关论文
共 4 条
[1]  
[Anonymous], ANN MATH, DOI DOI 10.2307/1970864
[2]  
Beiler AH., 1966, Recreations in the Theory of Numbers, V2
[3]   ALMOST EVERYWHERE DIVERGENCE OF MULTIPLE WALSH-FOURIER SERIES [J].
HARRIS, DC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (04) :637-643
[4]  
Schipp F., 1990, WALSH SERIES