Properties of the Global Total k-Domination Number

被引:1
作者
Hernandez Mira, Frank A. [1 ]
Parra Inza, Ernesto [2 ]
Sigarreta Almira, Jose M. [3 ]
Vakhania, Nodari [2 ]
机构
[1] Autonomous Univ Guerrero, Reg Dev Sci Ctr, Pinos S-N, Acapulco 39070, Guerrero, Mexico
[2] Autonomous Univ Morelos, Sci Res Ctr, Cuernavaca 62209, Morelos, Mexico
[3] Autonomous Univ Guerrero, Fac Math, Carlos E Adame 5, Acapulco 39070, Guerrero, Mexico
关键词
global total domination; total k-domination number;
D O I
10.3390/math9050480
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonempty subset D subset of V of vertices of a graph G=(V,E) is a dominating set if every vertex of this graph is adjacent to at least one vertex from this set except the vertices which belong to this set itself. D subset of V is a total k-dominating set if there are at least k vertices in set D adjacent to every vertex v is an element of V, and it is a global total k-dominating set if D is a total k-dominating set of both G and G over bar . The global total k-domination number of G, denoted by gamma(g)(kt)(G), is the minimum cardinality of a global total k-dominating set of G, GTkD-set. Here we derive upper and lower bounds of gamma(g)(kt)(G), and develop a method that generates a GTkD-set from a GT(k-1)D-set for the successively increasing values of k. Based on this method, we establish a relationship between gamma(g)((k-1)t)(G) and gamma(g)(kt)(G), which, in turn, provides another upper bound on gamma(g)(kt)(G).
引用
收藏
页码:1 / 13
页数:13
相关论文
共 13 条
[1]  
Akhbari MH, 2015, APPL MATH E-NOTES, V15, P22
[2]   Total k-domination in Cartesian product graphs [J].
Bermudo, S. ;
Sanchez, J. L. ;
Sigarreta, J. M. .
PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) :255-267
[3]  
Bermudo S, 2019, UTILITAS MATHEMATICA, V110, P151
[4]   On the global total k-domination number of graphs [J].
Bermudo, Sergio ;
Cabrera Martinez, Abel ;
Hernandez Mira, Frank A. ;
Sigarreta, Jose M. .
DISCRETE APPLIED MATHEMATICS, 2019, 263 :42-50
[5]   ON THE TOTAL k-DOMINATION IN GRAPHS [J].
Bermudo, Sergio ;
Hernandez-Gomez, Juan C. ;
Sigarreta, Jose M. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) :301-317
[6]   On the Total Outer k-Independent Domination Number of Graphs [J].
Cabrera-Martinez, Abel ;
Carlos Hernandez-Gomez, Juan ;
Parra-Inza, Ernesto ;
Sigarreta Almira, Jose Maria .
MATHEMATICS, 2020, 8 (02)
[7]   Total Domination in Graphs with Diameter 2 [J].
Desormeaux, Wyatt J. ;
Haynes, Teresa W. ;
Henning, Michael A. ;
Yeo, Anders .
JOURNAL OF GRAPH THEORY, 2014, 75 (01) :91-103
[8]  
Fernau H, 2015, UTILITAS MATHEMATICA, V98, P127
[9]  
FIEDLER M, 1975, CZECH MATH J, V25, P619
[10]  
Goddard W, 2002, J GRAPH THEOR, V40, P1, DOI 10.1002/jgt.10027