Properties of the Global Total k-Domination Number

被引:1
作者
Hernandez Mira, Frank A. [1 ]
Parra Inza, Ernesto [2 ]
Sigarreta Almira, Jose M. [3 ]
Vakhania, Nodari [2 ]
机构
[1] Autonomous Univ Guerrero, Reg Dev Sci Ctr, Pinos S-N, Acapulco 39070, Guerrero, Mexico
[2] Autonomous Univ Morelos, Sci Res Ctr, Cuernavaca 62209, Morelos, Mexico
[3] Autonomous Univ Guerrero, Fac Math, Carlos E Adame 5, Acapulco 39070, Guerrero, Mexico
关键词
global total domination; total k-domination number;
D O I
10.3390/math9050480
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonempty subset D subset of V of vertices of a graph G=(V,E) is a dominating set if every vertex of this graph is adjacent to at least one vertex from this set except the vertices which belong to this set itself. D subset of V is a total k-dominating set if there are at least k vertices in set D adjacent to every vertex v is an element of V, and it is a global total k-dominating set if D is a total k-dominating set of both G and G over bar . The global total k-domination number of G, denoted by gamma(g)(kt)(G), is the minimum cardinality of a global total k-dominating set of G, GTkD-set. Here we derive upper and lower bounds of gamma(g)(kt)(G), and develop a method that generates a GTkD-set from a GT(k-1)D-set for the successively increasing values of k. Based on this method, we establish a relationship between gamma(g)((k-1)t)(G) and gamma(g)(kt)(G), which, in turn, provides another upper bound on gamma(g)(kt)(G).
引用
收藏
页码:1 / 13
页数:13
相关论文
共 13 条
  • [1] Akhbari MH, 2015, APPL MATH E-NOTES, V15, P22
  • [2] Total k-domination in Cartesian product graphs
    Bermudo, S.
    Sanchez, J. L.
    Sigarreta, J. M.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 255 - 267
  • [3] Bermudo S, 2019, UTILITAS MATHEMATICA, V110, P151
  • [4] On the global total k-domination number of graphs
    Bermudo, Sergio
    Cabrera Martinez, Abel
    Hernandez Mira, Frank A.
    Sigarreta, Jose M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 263 : 42 - 50
  • [5] ON THE TOTAL k-DOMINATION IN GRAPHS
    Bermudo, Sergio
    Hernandez-Gomez, Juan C.
    Sigarreta, Jose M.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 301 - 317
  • [6] On the Total Outer k-Independent Domination Number of Graphs
    Cabrera-Martinez, Abel
    Carlos Hernandez-Gomez, Juan
    Parra-Inza, Ernesto
    Sigarreta Almira, Jose Maria
    [J]. MATHEMATICS, 2020, 8 (02)
  • [7] Total Domination in Graphs with Diameter 2
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    Yeo, Anders
    [J]. JOURNAL OF GRAPH THEORY, 2014, 75 (01) : 91 - 103
  • [8] Fernau H, 2015, UTILITAS MATHEMATICA, V98, P127
  • [9] FIEDLER M, 1975, CZECH MATH J, V25, P619
  • [10] Goddard W, 2002, J GRAPH THEOR, V40, P1, DOI 10.1002/jgt.10027