Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease

被引:64
作者
Cheng, Bo [1 ]
Liu, Mingxia [2 ,3 ,4 ]
Shen, Dinggang [3 ,4 ,5 ]
Li, Zuoyong [6 ]
Zhang, Daoqiang [2 ,6 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Adv Network & Intellectual Technol, Chongqing 404120, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Jiangsu, Peoples R China
[3] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, BRIC, Chapel Hill, NC 27599 USA
[5] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
[6] Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou 350121, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Transfer learning; Multi-domain; Alzheimer's disease (AD); Feature selection; MILD COGNITIVE IMPAIRMENT; BRAIN ATROPHY; FEATURE-SELECTION; SPATIAL-PATTERNS; MCI PATIENTS; BASE-LINE; CONVERSION; PREDICTION; MRI; CLASSIFICATION;
D O I
10.1007/s12021-016-9318-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer's Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multi-domain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods.
引用
收藏
页码:115 / 132
页数:18
相关论文
共 64 条
[1]  
Alzheimer's A, 2014, ALZHEIMERS DEMENT, V2014, pe47, DOI [DOI 10.1016/J.JALZ.2010.01.009, DOI 10.1016/J.JALZ.2015.02.003]
[2]  
[Anonymous], 2007, P ACM MM
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]   ASL Perfusion MRI Predicts Cognitive Decline and Conversion From MCI to Dementia [J].
Chao, Linda L. ;
Buckley, Shannon T. ;
Kornak, John ;
Schuff, Norbert ;
Madison, Catherine ;
Yaffe, Kristine ;
Miller, Bruce L. ;
Kramer, Joel H. ;
Weiner, Michael W. .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2010, 24 (01) :19-27
[5]   Accelerated Gradient Method for Multi-Task Sparse Learning Problem [J].
Chen, Xi ;
Pan, Weike ;
Kwok, James T. ;
Carbonell, Jaime G. .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, :746-+
[6]   Multimodal manifold-regularized transfer learning for MCI conversion prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Suk, Heung-Il ;
Shen, Dinggang ;
Zhang, Daoqiang .
BRAIN IMAGING AND BEHAVIOR, 2015, 9 (04) :913-926
[7]   Domain Transfer Learning for MCI Conversion Prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Zhang, Daoqiang ;
Munsell, Brent C. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) :1805-1817
[8]  
Cheng B, 2012, LECT NOTES COMPUT SC, V7510, P82, DOI 10.1007/978-3-642-33415-3_11
[9]   Semi-Supervised Multimodal Relevance Vector Regression Improves Cognitive Performance Estimation from Imaging and Biological Biomarkers [J].
Cheng, Bo ;
Zhang, Daoqiang ;
Chen, Songcan ;
Kaufer, Daniel I. ;
Shen, Dinggang .
NEUROINFORMATICS, 2013, 11 (03) :339-353
[10]   Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI:: A longitudinal MRI study [J].
Chételat, G ;
Landeau, B ;
Eustache, F ;
Mézenge, F ;
Viader, F ;
de la Sayette, V ;
Desgranges, B ;
Baron, JC .
NEUROIMAGE, 2005, 27 (04) :934-946