Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system

被引:13
作者
Zhang, Weiyi [1 ]
Liu, Zuhan [1 ]
Zhou, Ling [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Keller-Segel system; Regularity of weak solution; Classical solution; Global existence; Asymptotic behavior; TIME BLOW-UP; PARABOLIC CHEMOTAXIS SYSTEM; PATTERN-FORMATION; WELL-POSEDNESS; BOUNDEDNESS; DIFFUSION; MODEL; LAPLACIAN; DECAY;
D O I
10.1016/j.na.2019.111624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a fractional parabolic-elliptic Keller-Segel system with a logistic source on R-N. First, we establish the regularity of weak solutions of the fractional parabolic equation, using blow-up arguments combined with Liouvilletype theorems. Next, by the semigroup method and regularity results we prove the local existence and uniqueness of classical solutions. Moreover, the global existence and boundedness of classical solutions for given initial data are obtained under some conditions. Finally, we show the asymptotic behavior of the global solutions with strictly positive initial data. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:34
相关论文
共 61 条
[1]   An approximate treatment of gravitational collapse [J].
Ascasibar, Yago ;
Granero-Belinchon, Rafael ;
Manuel Moreno, Jose .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 262 :71-82
[2]   Helical Levy walks:: Adjusting searching statistics to resource availability in microzooplankton [J].
Bartumeus, F ;
Peters, F ;
Pueyo, S ;
Marrasé, C ;
Catalan, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :12771-12775
[3]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[4]  
Biler P., 1999, PROBAB MATH STAT-POL, V19, P267
[5]   LOCAL CRITERIA FOR BLOWUP IN TWO-DIMENSIONAL CHEMOTAXIS MODELS [J].
Biler, Piotr ;
Cieslak, Tomasz ;
Karch, Grzegorz ;
Zienkiewicz, Jacek .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) :1841-1856
[6]   Blowup of solutions to generalized Keller-Segel model [J].
Biler, Piotr ;
Karch, Grzegorz .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :247-262
[7]   Two-dimensional chemotaxis models with fractional diffusion [J].
Biler, Piotr ;
Wu, Gang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (01) :112-126
[8]   The one-dimensional Keller-Segel model with fractional diffusion of cells [J].
Bournaveas, Nikolaos ;
Calvez, Vincent .
NONLINEARITY, 2010, 23 (04) :923-935
[9]  
Burczak J., ARXIV170704527V1
[10]   Suppression of blow up by a logistic source in 2D Keller-Segel system with fractional dissipation [J].
Burczak, Jan ;
Granero-Belinchon, Rafael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) :6115-6142