A prognostic system for epithelial ovarian carcinomas using machine learning

被引:9
作者
Grimley, Philip M. [1 ]
Liu, Zhenqiu [2 ]
Darcy, Kathleen M. [3 ]
Hueman, Matthew T. [4 ]
Wang, Huan [5 ]
Sheng, Li [6 ]
Henson, Donald E. [7 ]
Chen, Dechang [7 ]
机构
[1] Uniformed Serv Univ Hlth Sci, F Edward Hebert Sch Med, Dept Pathol, Bethesda, MD 20814 USA
[2] Penn State Canc Inst, Dept Publ Hlth Sci, Hershey, PA USA
[3] Uniformed Serv Univ Hlth Sci, Dept Obstet & Gynecol, Bethesda, MD 20814 USA
[4] Walter Reed Natl Mil Med Ctr, John P Murtha Canc Ctr, Dept Surg Oncol, Bethesda, MD USA
[5] George Washington Univ, Dept Biostat, Washington, DC USA
[6] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[7] Uniformed Serv Univ Hlth Sci, F Edward Hebert Sch Med, Dept Prevent Med & Biostat, Bethesda, MD 20814 USA
关键词
C‐ index; dendrogram; machine learning; ovarian carcinoma; staging; survival; LOW-GRADE; CELL-TYPE; CANCER; SURVIVAL; EXPRESSION; DISPARITIES; NOMOGRAM; SERIES; RACE; AGE;
D O I
10.1111/aogs.14137
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Introduction Integrating additional factors into the International Federation of Gynaecology and Obstetrics (FIGO) staging system is needed for accurate patient classification and survival prediction. In this study, we tested machine learning as a novel tool for incorporating additional prognostic parameters into the conventional FIGO staging system for stratifying patients with epithelial ovarian carcinomas and evaluating their survival. Material and methods Cancer-specific survival data for epithelial ovarian carcinomas were extracted from the Surveillance, Epidemiology, and End Results (SEER) program. Two datasets were constructed based upon the year of diagnosis. Dataset 1 (39 514 cases) was limited to primary tumor (T), regional lymph nodes (N) and distant metastasis (M). Dataset 2 (25 291 cases) included additional parameters of age at diagnosis (A) and histologic type and grade (H). The Ensemble Algorithm for Clustering Cancer Data (EACCD) was applied to generate prognostic groups with depiction in dendrograms. C-indices provided dendrogram cutoffs and comparisons of prediction accuracy. Results Dataset 1 was stratified into nine epithelial ovarian carcinoma prognostic groups, contrasting with 10 groups from FIGO methodology. The EACCD grouping had a slightly higher accuracy in survival prediction than FIGO staging (C-index = 0.7391 vs. 0.7371, increase in C-index = 0.0020, 95% confidence interval [CI] 0.0012-0.0027, p = 1.8 x 10(-7)). Nevertheless, there remained a strong inter-system association between EACCD and FIGO (rank correlation = 0.9480, p = 6.1 x 10(-15)). Analysis of Dataset 2 demonstrated that A and H could be smoothly integrated with the T, N and M criteria. Survival data were stratified into nine prognostic groups with an even higher prediction accuracy (C-index = 0.7605) than when using only T, N and M. Conclusions EACCD was successfully applied to integrate A and H with T, N and M for stratification and survival prediction of epithelial ovarian carcinoma patients. Additional factors could be advantageously incorporated to test the prognostic impact of emerging diagnostic or therapeutic advances.
引用
收藏
页码:1511 / 1519
页数:9
相关论文
共 52 条
[1]  
Amin M.B., 2017, AJCC Cancer Staging Manual, V8th ed., DOI DOI 10.1007/978-3-319-40618-3
[2]  
[Anonymous], 2018, SEER RESEARCH DATA RECORD DESCRIPTION
[3]  
[Anonymous], SEER cause-specific death classification
[4]   Nomogram for predicting 5-year disease-specific mortality after primary surgery for epithelial ovarian cancer [J].
Barlin, Joyce N. ;
Yu, Changhong ;
Hill, Emily K. ;
Zivanovic, Oliver ;
Kolev, Valentin ;
Levine, Douglas A. ;
Sonoda, Yukio ;
Abu-Rustum, Nadeem R. ;
Huh, Jae ;
Barakat, Richard R. ;
Kattan, Michael W. ;
Chi, Dennis S. .
GYNECOLOGIC ONCOLOGY, 2012, 125 (01) :25-30
[5]   Integrated genomic analyses of ovarian carcinoma [J].
Bell, D. ;
Berchuck, A. ;
Birrer, M. ;
Chien, J. ;
Cramer, D. W. ;
Dao, F. ;
Dhir, R. ;
DiSaia, P. ;
Gabra, H. ;
Glenn, P. ;
Godwin, A. K. ;
Gross, J. ;
Hartmann, L. ;
Huang, M. ;
Huntsman, D. G. ;
Iacocca, M. ;
Imielinski, M. ;
Kalloger, S. ;
Karlan, B. Y. ;
Levine, D. A. ;
Mills, G. B. ;
Morrison, C. ;
Mutch, D. ;
Olvera, N. ;
Orsulic, S. ;
Park, K. ;
Petrelli, N. ;
Rabeno, B. ;
Rader, J. S. ;
Sikic, B. I. ;
Smith-McCune, K. ;
Sood, A. K. ;
Bowtell, D. ;
Penny, R. ;
Testa, J. R. ;
Chang, K. ;
Dinh, H. H. ;
Drummond, J. A. ;
Fowler, G. ;
Gunaratne, P. ;
Hawes, A. C. ;
Kovar, C. L. ;
Lewis, L. R. ;
Morgan, M. B. ;
Newsham, I. F. ;
Santibanez, J. ;
Reid, J. G. ;
Trevino, L. R. ;
Wu, Y. -Q. ;
Wang, M. .
NATURE, 2011, 474 (7353) :609-615
[6]   Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. [J].
Bonome, T ;
Lee, JY ;
Park, DC ;
Radonovich, M ;
Pise-Masison, C ;
Brady, J ;
Gardner, GJ ;
Hao, K ;
Wong, WH ;
Barrett, JC ;
Lu, KH ;
Sood, AK ;
Gershenson, DM ;
Mok, SC ;
Birrer, MJ .
CANCER RESEARCH, 2005, 65 (22) :10602-10612
[7]   Disparities in Ovarian Cancer Care Quality and Survival According to Race and Socioeconomic Status [J].
Bristow, Robert E. ;
Powell, Matthew A. ;
Al-Hammadi, Noor ;
Chen, Ling ;
Miller, J. Philip ;
Roland, Phillip Y. ;
Mutch, David G. ;
Cliby, William A. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2013, 105 (11) :823-832
[8]   Differential expression of estrogen receptor subtypes and variants in ovarian cancer: effects on cell invasion, proliferation and prognosis [J].
Chan, Karen K. L. ;
Siu, Michelle K. Y. ;
Jiang, Yu-xin ;
Wang, Jing-jing ;
Wang, Yan ;
Leung, Thomas H. Y. ;
Liu, Stephanie S. ;
Cheung, Annie N. Y. ;
Ngan, Hextan Y. S. .
BMC CANCER, 2017, 17
[9]   An algorithm for expanding the TNM staging system [J].
Chen, Dechang ;
Hueman, Matthew T. ;
Henson, Donald E. ;
Schwartz, Arnold M. .
FUTURE ONCOLOGY, 2016, 12 (08) :1015-1024
[10]   Developing Prognostic Systems of Cancer Patients by Ensemble Clustering [J].
Chen, Dechang ;
Xing, Kai ;
Henson, Donald ;
Sheng, Li ;
Schwartz, Arnold M. ;
Cheng, Xiuzhen .
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2009,