Marcinkiewicz estimates for solution to fractional elliptic Laplacian equation

被引:19
作者
Huang, Shuibo [1 ]
Tian, Qiaoyu [1 ]
机构
[1] Northwest Minzu Univ, Sch Math & Comp, Lanzhou 730000, Gansu, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional Laplacian; Marcinkiewicz estimates; OBSTACLE PROBLEM; FREE-BOUNDARY; REGULARITY; OPERATORS; SOBOLEV;
D O I
10.1016/j.camwa.2019.04.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Marcinkiewicz summability of solutions to the following fractional elliptic problem {(-Delta)(s)u = f(x), is an element of Omega, u > 0, is an element of Omega, u = 0, x is an element of R-N \ Omega, where (-Delta)(s) denotes the fractional Laplacian operator, s is an element of (0, 1),Omega subset of R-N is a bounded domain with Lipschitz boundary, f belongs to some Marcinkiewicz space M-m(Omega) with m > 1. The main novelty of this paper is actually the fact that the solutions to the above equation are bounded if m > (2N/N+2s)(2), instead of m > N/2S. The results of this paper are new even for s = 1. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1732 / 1738
页数:7
相关论文
共 22 条
[1]   On the fractional p-Laplacian equations with weight and general datum [J].
Abdellaoui, Boumediene ;
Attar, Ahmed ;
Bentifour, Rachid .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :144-174
[2]   The effect of the Hardy potential in some Calderon-Zygmund properties for the fractional Laplacian [J].
Abdellaoui, Boumediene ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) :8160-8206
[3]  
[Anonymous], 1965, ANN I FOURIER, DOI DOI 10.5802/AIF.204
[4]   Some remarks on the solvability of non-local elliptic problems with the Hardy potential [J].
Barrios, B. ;
Medina, M. ;
Peral, I. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
[5]   GLOBAL REGULARITY FOR THE FREE BOUNDARY IN THE OBSTACLE PROBLEM FOR THE FRACTIONAL LAPLACIAN [J].
Barrios, Begona ;
Figalli, Alessio ;
Ros-Oton, Xavier .
AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (02) :415-447
[6]   Local Elliptic Regularity for the Dirichlet Fractional Laplacian [J].
Biccari, Umberto ;
Warma, Mahamadi ;
Zuazua, Enrique .
ADVANCED NONLINEAR STUDIES, 2017, 17 (02) :387-409
[7]   A failing in the Calderon-Zygmund theory of Dirichlet problems for linear equations with discontinuous coefficients [J].
Boccardo, Lucio .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2015, 26 (02) :215-221
[8]   Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data [J].
Boccardo, Lucio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) :591-601
[9]   Nonlocal problems with critical Hardy nonlinearity [J].
Chen, Wenjing ;
Mosconi, Sunra ;
Squassina, Marco .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (11) :3065-3114
[10]   Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces [J].
Cozzi, Matteo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) :555-578