Adaptive Pooling of the Most Relevant Spatio-Temporal Features for Action Recognition

被引:0
作者
Ahmed, Faisal [1 ]
Paul, Padma Polash [2 ]
Gavrilova, Marina [2 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93117 USA
[2] Univ Calgary, Calgary, AB, Canada
来源
PROCEEDINGS OF 2016 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2016年
基金
加拿大自然科学与工程研究理事会;
关键词
action recognition; Kinect skeleton; joint relevance; motion representation; dynamic time warping; score fusion;
D O I
10.1109/ISM.2016.46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a model-based action recognition system that utilizes the Kinect 3D skeleton to construct adaptive spatio-temporal motion representations. The proposed method utilizes two features, namely the joint relative distance (JRD) and joint relative angle (JRA) to encode the spatio-temporal motion patterns of different skeletal joints. To evaluate the relevance of a particular joint-pair in representing an action class, we introduce a flatness measure that quantifies the level of engagement of the corresponding joint-pair in performing the action. The flatness measures computed for all skeletal joint-pairs are accumulated to construct a joint-pair relevance (JPR) matrix, which facilitates adaptive pooling of the most relevant spatio-temporal features to construct the final motion description for individual action classes. In addition, we propose a score level fusion of JRD and JRA features with a weighted dynamic time warping (DTW)-based matching scheme to effectively boost the overall recognition performance. In our experiments, the proposed method achieves better recognition performance than well-known existing methods.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 13 条
[1]  
Ahmed F., 2015, J. WSCG, V23, P147
[2]   DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect [J].
Ahmed, Faisal ;
Paul, Padma Polash ;
Gavrilova, Marina L. .
VISUAL COMPUTER, 2015, 31 (6-8) :915-924
[3]  
[Anonymous], 2016, P 29 INT C COMP AN S
[4]   Ongoing human action recognition with motion capture [J].
Barnachon, Mathieu ;
Bouakaz, Saida ;
Boufama, Boubakeur ;
Guillou, Erwan .
PATTERN RECOGNITION, 2014, 47 (01) :238-247
[5]   The recognition of human movement using temporal templates [J].
Bobick, AF ;
Davis, JW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (03) :257-267
[6]   Human Activity Recognition Process Using 3-D Posture Data [J].
Gaglio, Salvatore ;
Lo Re, Giuseppe ;
Morana, Marco .
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2015, 45 (05) :586-597
[7]  
Gray A., 1974, IEEE T ACOUSTIC SPEE, V22
[8]   Learning realistic human actions from movies [J].
Laptev, Ivan ;
Marszalek, Marcin ;
Schmid, Cordelia ;
Rozenfeld, Benjamin .
2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, :3222-+
[9]   Retrieval of logically relevant 3D human motions by Adaptive Feature Selection with Graded Relevance Feedback [J].
Tang, Jeff K. T. ;
Leung, Howard .
PATTERN RECOGNITION LETTERS, 2012, 33 (04) :420-430
[10]   Pose-based human action recognition via sparse representation in dissimilarity space [J].
Theodorakopoulos, Ilias ;
Kastaniotis, Dimitris ;
Economou, George ;
Fotopoulos, Spiros .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (01) :12-23