On the Riemannian geometry defined by self-concordant barriers and interior-point methods

被引:88
作者
Nesterov, YE [1 ]
Todd, MJ
机构
[1] Catholic Univ Louvain, CORE, B-1348 Louvain, Belgium
[2] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
关键词
Central path - Geodesic curves - Infeasible interior point method - Interior-point method - Linear functions - Provide guidances - Riemannian geometry - Self-concordant barriers;
D O I
10.1007/s102080010032
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the Riemannian geometry defined on a convex set by the Hessian of a self-concordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interior-point methods for optimizing a linear function over the intersection of the set with an affine manifold. We show that algorithms that follow the primal-dual central path are in some sense close to optimal. The same is true for methods that follow the shifted primal-dual central path among certain infeasible-interior-point methods. We also compute the geodesics in several simple sets.
引用
收藏
页码:333 / 361
页数:29
相关论文
共 14 条
[1]   The geometry of algorithms with orthogonality constraints [J].
Edelman, A ;
Arias, TA ;
Smith, ST .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :303-353
[2]   Barrier functions in interior point methods [J].
Guler, O .
MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (04) :860-885
[3]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[4]  
Karmarkar N., 1990, Contemp. Math., V114, P51
[5]   POSITIVITATSBEREICHE IM RN. [J].
KOECHER, M .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (03) :575-596
[6]   Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems [J].
Nesterov, Y ;
Todd, MJ ;
Ye, Y .
MATHEMATICAL PROGRAMMING, 1999, 84 (02) :227-267
[7]  
Nesterov Y., 1994, INTERIOR POINT POLYN
[8]  
NESTEROV YE, 1996, MATH PROGRAM, V76, P47
[9]  
Rothaus O. S., 1960, ABH MATH SEM HAMBURG, V24, P189, DOI DOI 10.1007/BF02942030
[10]   GEOMETRIC-METHOD IN NON-LINEAR PROGRAMMING [J].
TANABE, K .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 30 (02) :181-210