Dark solitons revealed in Lieb-Liniger eigenstates

被引:10
作者
Golletz, Weronika [1 ,2 ,3 ]
Gorecki, Wojciech [1 ,4 ]
Oldziejewski, Rafal [1 ,5 ,6 ]
Pawlowski, Krzysztof [1 ]
机构
[1] Polish Acad Sci, Ctr Theoret Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Uniwersytet Jagiellonski, Inst Fizyki Teoretycznej, Ulica Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
[4] Univ Warsaw, Fac Phys, Ulica Pasteura 5, PL-02093 Warsaw, Poland
[5] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[6] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
关键词
INTERACTING BOSE-GAS;
D O I
10.1103/PhysRevResearch.2.033368
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study how dark solitons, i.e., solutions of one-dimensional, single-particle, nonlinear, time-dependent Schrodinger equation, emerge from eigenstates of a linear many-body model of contact-interacting bosons moving on a ring, the Lieb-Liniger model. This long-standing problem has been addressed by various groups, which presented different, seemingly unrelated, procedures to reveal the solitonic waves directly from the many-body model. Here, we propose a unification of these results using a simple ansatz for the many-body eigenstate of the Lieb-Liniger model, which gives us access to systems of hundreds of atoms. In this approach, mean-field solitons emerge in a single-particle density through repeated measurements of particle positions in the ansatz state. The postmeasurement state turns out to be a wave packet of yrast states of the reduced system.
引用
收藏
页数:13
相关论文
共 44 条
[1]  
[Anonymous], 2020, PHYS REV RES, V2, P033368
[2]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[3]   How Gaussian can our Universe be? [J].
Cabass, G. ;
Pajer, E. ;
Schmidt, F. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (01)
[4]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. II. Case of attractive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063611-063611
[5]   Bose-Einstein condensates in symmetry breaking states [J].
Castin, Y ;
Herzog, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2001, 2 (03) :419-443
[6]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[7]   Experimental Observation of Dark Solitons on the Surface of Water [J].
Chabchoub, A. ;
Kimmoun, O. ;
Branger, H. ;
Hoffmann, N. ;
Proment, D. ;
Onorato, M. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[8]   Many-Body Matter-Wave Dark Soliton [J].
Delande, Dominique ;
Sacha, Krzysztof .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[9]  
DeWitt C., 1958, MANY BODY PROBLEM
[10]   Nucleation in Finite Topological Systems During Continuous Metastable Quantum Phase Transitions [J].
Fialko, Oleksandr ;
Delattre, Marie-Coralie ;
Brand, Joachim ;
Kolovsky, Andrey R. .
PHYSICAL REVIEW LETTERS, 2012, 108 (25)