Data-Driven Medium-Range Weather Prediction With a Resnet Pretrained on Climate Simulations: A New Model for WeatherBench

被引:128
作者
Rasp, Stephan [1 ,2 ]
Thuerey, Nils [1 ]
机构
[1] Tech Univ Munich, Dept Informat, Munich, Germany
[2] ClimateAi, San Francisco, CA 94111 USA
关键词
deep learning; machine learning; numerical weather forecasting; FORECASTS; DESIGN;
D O I
10.1029/2020MS002405
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Numerical weather prediction has traditionally been based on the models that discretize the dynamical and physical equations of the atmosphere. Recently, however, the rise of deep learning has created increased interest in purely data-driven medium-range weather forecasting with first studies exploring the feasibility of such an approach. To accelerate progress in this area, the WeatherBench benchmark challenge was defined. Here, we train a deep residual convolutional neural network (Resnet) to predict geopotential, temperature and precipitation at 5.625 degrees resolution up to 5 days ahead. To avoid overfitting and improve forecast skill, we pretrain the model using historical climate model output before fine-tuning on reanalysis data. The resulting forecasts outperform previous submissions to WeatherBench and are comparable in skill to a physical baseline at similar resolution. We also analyze how the neural network creates its predictions and find that, for the case studies analyzed, the model has learned physically reasonable correlations. Finally, we perform scaling experiments to estimate the potential skill of data-driven approaches at higher resolutions.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting [J].
Ancell, Brian ;
Hakim, Gregory J. .
MONTHLY WEATHER REVIEW, 2007, 135 (12) :4117-4134
[2]   The quiet revolution of numerical weather prediction [J].
Bauer, Peter ;
Thorpe, Alan ;
Brunet, Gilbert .
NATURE, 2015, 525 (7567) :47-55
[3]   Challenges and design choices for global weather and climate models based on machine learning [J].
Dueben, Peter D. ;
Bauer, Peter .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (10) :3999-4009
[4]   Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization [J].
Eyring, Veronika ;
Bony, Sandrine ;
Meehl, Gerald A. ;
Senior, Catherine A. ;
Stevens, Bjorn ;
Stouffer, Ronald J. ;
Taylor, Karl E. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) :1937-1958
[5]  
Gronquist P., 2020, DEEP LEARNING POSTPR
[6]   High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 [J].
Haarsma, Reindert J. ;
Roberts, Malcolm J. ;
Vidale, Pier Luigi ;
Senior, Catherine A. ;
Bellucci, Alessio ;
Bao, Qing ;
Chang, Ping ;
Corti, Susanna ;
Fuckar, Neven S. ;
Guemas, Virginie ;
von Hardenberg, Jost ;
Hazeleger, Wilco ;
Kodama, Chihiro ;
Koenigk, Torben ;
Leung, L. Ruby ;
Lu, Jian ;
Luo, Jing-Jia ;
Mao, Jiafu ;
Mizielinski, Matthew S. ;
Mizuta, Ryo ;
Nobre, Paulo ;
Satoh, Masaki ;
Scoccimarro, Enrico ;
Semmler, Tido ;
Small, Justin ;
von Storch, Jin-Song .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (11) :4185-4208
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   The ERA5 global reanalysis [J].
Hersbach, Hans ;
Bell, Bill ;
Berrisford, Paul ;
Hirahara, Shoji ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Peubey, Carole ;
Radu, Raluca ;
Schepers, Dinand ;
Simmons, Adrian ;
Soci, Cornel ;
Abdalla, Saleh ;
Abellan, Xavier ;
Balsamo, Gianpaolo ;
Bechtold, Peter ;
Biavati, Gionata ;
Bidlot, Jean ;
Bonavita, Massimo ;
De Chiara, Giovanna ;
Dahlgren, Per ;
Dee, Dick ;
Diamantakis, Michail ;
Dragani, Rossana ;
Flemming, Johannes ;
Forbes, Richard ;
Fuentes, Manuel ;
Geer, Alan ;
Haimberger, Leo ;
Healy, Sean ;
Hogan, Robin J. ;
Holm, Elias ;
Janiskova, Marta ;
Keeley, Sarah ;
Laloyaux, Patrick ;
Lopez, Philippe ;
Lupu, Cristina ;
Radnoti, Gabor ;
de Rosnay, Patricia ;
Rozum, Iryna ;
Vamborg, Freja ;
Villaume, Sebastien ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) :1999-2049
[9]  
Hewson T.D., 2020, NEW LOW COST TECHNIQ
[10]  
Hilburn K.A., 2020, B AM METEOROL SOC, V101, pE2149, DOI DOI 10.1175/BAMS-D-20-0097.1