Abundant new exact solutions for the (3+1)-dimensional Jimbo-Miwa equation

被引:25
作者
Li, Zitian [1 ]
Dai, Zhengde [2 ]
机构
[1] Qujing Normal Univ, Coll Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
基金
美国国家科学基金会;
关键词
Jimbo-Miwa equation; The generalized Riccati equation mapping method; Periodic wave; Soliton; WAVE SOLUTIONS;
D O I
10.1016/j.jmaa.2009.07.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the generalized Riccati equation mapping method, and picking up its new solutions authors obtain abundant new exact solutions including kink solutions, periodic form solutions, soliton-like solutions and rational solutions to a (3 + 1)-dimensional Jimbo-Miwa equation, respectively. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:587 / 590
页数:4
相关论文
共 12 条
[1]  
Ablowitz M J., 1990, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
[2]   Exact cross kink-wave solutions and resonance for the Jimbo-Miwa equation [J].
Dai, Zhengde ;
Li, Zitian ;
Liu, Zhenjiang ;
Li, Donglong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) :285-290
[3]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[4]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[5]  
LV ZS, 2003, PHYS LETT A, V307, P269
[6]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[7]   The tanh method .2. Perturbation technique for conservative systems [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :569-575
[8]   On the extended applications of Homogenous Balance Method [J].
Senthilvelan, M .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 123 (03) :381-388
[9]   A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation [J].
Vakhnenko, VO ;
Parkes, EJ ;
Morrison, AJ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :683-692
[10]   Two reliable methods for solving variants of the KdV equation with compact and noncompact structures [J].
Wazwaz, AM .
CHAOS SOLITONS & FRACTALS, 2006, 28 (02) :454-462