Diversity-oriented synthesis of polymer membranes with ion solvation cages

被引:120
作者
Baran, Miranda J. [1 ,2 ]
Carrington, Mark E. [3 ]
Sahu, Swagat [1 ]
Baskin, Artem [1 ]
Song, Junhua [3 ]
Baird, Michael A. [2 ]
Han, Kee Sung [4 ,5 ]
Mueller, Karl T. [4 ,5 ]
Teat, Simon J. [6 ]
Meckler, Stephen M. [2 ]
Fu, Chengyin [3 ]
Prendergast, David [1 ,3 ]
Helms, Brett A. [1 ,3 ,7 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[4] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[5] Pacific Northwest Natl Lab, Joint Ctr Energy Storage Res, Richland, WA 99352 USA
[6] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[7] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
D O I
10.1038/s41586-021-03377-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microporous polymers feature shape-persistent free volume elements (FVEs), which are permeated by small molecules and ions when used as membranes for chemical separations, water purification, fuel cells and batteries(1-3). Identifying FVEs that have analyte specificity remains a challenge, owing to difficulties in generating polymers with sufficient diversity to enable screening of their properties. Here we describe a diversity-oriented synthetic strategy for microporous polymer membranes to identify candidates featuring FVEs that serve as solvation cages for lithium ions (Li+). This strategy includes diversification of bis(catechol) monomers by Mannich reactions to introduce Li+-coordinating functionality within FVEs, topology-enforcing polymerizations for networking FVEs into different pore architectures, and several on-polymer reactions for diversifying pore geometries and dielectric properties. The most promising candidate membranes featuring ion solvation cages exhibited both higher ionic conductivity and higher cation transference number than control membranes, in which FVEs were aspecific, indicating that conventional bounds for membrane permeability and selectivity for ion transport can be overcome(4). These advantages are associated with enhanced Li+ partitioning from the electrolyte when cages are present, higher diffusion barriers for anions within pores, and network-enforced restrictions on Li+ coordination number compared to the bulk electrolyte, which reduces the effective mass of the working ion. Such membranes show promise as anode-stabilizing interlayers in high-voltage lithium metal batteries.
引用
收藏
页码:225 / +
页数:8
相关论文
共 51 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]  
Arend M, 1998, ANGEW CHEM INT EDIT, V37, P1044, DOI 10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO
[3]  
2-E
[4]  
Bachman JE, 2016, NAT MATER, V15, P845, DOI [10.1038/NMAT4621, 10.1038/nmat4621]
[5]   Design Rules for Membranes from Polymers of Intrinsic Microporosity for Crossover-free Aqueous Electrochemical Devices [J].
Baran, Miranda J. ;
Braten, Miles N. ;
Sahu, Swagat ;
Baskin, Artem ;
Meckler, Stephen M. ;
Li, Longjun ;
Maserati, Lorenzo ;
Carrington, Mark E. ;
Chiang, Yet-Ming ;
Prendergast, David ;
Helms, Brett A. .
JOULE, 2019, 3 (12) :2968-2985
[6]   Metadynamics [J].
Barducci, Alessandro ;
Bonomi, Massimiliano ;
Parrinello, Michele .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (05) :826-843
[7]   Unusual and unexpected reactivity of t-butyl dicarbonate (Boc2O)with alcohols in the presence of magnesium perchlorate.: A new and general route to t-butyl ethers [J].
Bartoli, G ;
Bosco, M ;
Locatelli, M ;
Marcantoni, E ;
Melchiorre, P ;
Sambri, L .
ORGANIC LETTERS, 2005, 7 (03) :427-430
[8]   Covalent Organic Frameworks as a Platform for Multidimensional Polymerization [J].
Bisbey, Ryan P. ;
Dichtel, William R. .
ACS CENTRAL SCIENCE, 2017, 3 (06) :533-543
[9]   STEADY-STATE CURRENT FLOW IN SOLID BINARY ELECTROLYTE CELLS [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 225 (1-2) :1-17
[10]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+