A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide

被引:35
作者
Gershman, Sophia [1 ]
Harreguy, Maria B. [2 ]
Yatom, Shurik [1 ]
Raitses, Yevgeny [1 ]
Efthimion, Phillip [1 ]
Haspel, Gal [2 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] New Jersey Inst Technol, Dept Biol Sci, Newark, NJ 07102 USA
关键词
D O I
10.1038/s41598-021-84086-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is an urgent need for disinfection and sterilization devices accessible to the public that can be fulfilled by innovative strategies for using cold atmospheric pressure plasmas. Here, we demonstrate a successful novel combination of a flexible printed circuit design of a dielectric barrier discharge (flex-DBD) with an environmentally safe chemical reagent for surface decontamination from bacterial contaminants. Flex-DBD operates in ambient air, atmospheric pressure, and room temperature without any additional gas flow at a power density not exceeding 0.5 W/cm(2). The flex-DBD activation of a 3% hydrogen peroxide solution results in the reduction in the bacterial load of a surface contaminant of>6log(10) in 90 s, about 3log(10) and 2log(10) better than hydrogen peroxide alone or the flex-DBD alone, respectively, for the same treatment time. We propose that the synergy between plasma and hydrogen peroxide is based on the combined action of plasma-generated OH radicals in the hydrogen peroxide solution and the reactive nitrogen species supplied by the plasma effluent. A scavenger method verified a significant increase in OH concentration due to plasma treatment. Novel in-situ FTIR absorption spectra show the presence of O-3, NO2, N2O, and other nitrogen species. Ozone dissolving in the H2O2 solution can effectively generate OH through a peroxone process. The addition of the reactive nitrogen species increases the disinfection efficiency of the hydroxyl radicals and other oxygen species. Hence, plasma activation of a low concentration hydrogen peroxide solution, using a hand-held flexible DBD device results in a dramatic improvement in disinfection.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus [J].
Aboubakr, Hamada A. ;
Mor, Sunil K. ;
Higgins, LeeAnn ;
Armien, Anibal ;
Youssef, Mohammed M. ;
Bruggeman, Peter J. ;
Goyal, Sagar M. .
PLOS ONE, 2018, 13 (03)
[2]   Mechanisms of Selective Antitumor Action of Cold Atmospheric Plasma-Derived Reactive Oxygen and Nitrogen Species [J].
Bauer, Georg ;
Graves, David B. .
PLASMA PROCESSES AND POLYMERS, 2016, 13 (12) :1157-1178
[3]   Gas Plasma Technology-An Asset to Healthcare During Viral Pandemics Such as the COVID-19 Crisis? [J].
Bekeschus, Sander ;
Kramer, Axel ;
Suffredini, Elisabetta ;
von Woedtke, Thomas ;
Colombo, Vittorio .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2020, 4 (04) :391-399
[4]   White paper on plasma for medicine and hygiene: Future in plasma health sciences [J].
Bekeschus, Sander ;
Favia, Pietro ;
Robert, Eric ;
von Woedtke, Thomas .
PLASMA PROCESSES AND POLYMERS, 2019, 16 (01)
[5]   Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control [J].
Benard, Nicolas ;
Moreau, Eric .
EXPERIMENTS IN FLUIDS, 2014, 55 (11)
[6]   Temporal evolution of a surface dielectric barrier discharge for different groups of plasma microdischarges [J].
Biganzoli, I. ;
Barni, R. ;
Riccardi, C. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (02)
[7]   A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet [J].
Boekema, B. K. H. L. ;
Vlig, M. ;
Guijt, D. ;
Hijnen, K. ;
Hofmann, S. ;
Smits, P. ;
Sobota, A. ;
van Veldhuizen, E. M. ;
Bruggeman, P. ;
Middelkoop, E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (04)
[8]   Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments [J].
Brandenburg, Ronny .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (05)
[9]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[10]   Non-thermal plasmas in and in contact with liquids [J].
Bruggeman, Peter ;
Leys, Christophe .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (05)