Ready, Set, Flow! Automated Continuous Synthesis and Optimization

被引:90
作者
Breen, Christopher P. [1 ]
Nambiar, Anirudh M. K. [2 ]
Jamison, Timothy F. [1 ]
Jensen, Klavs F. [2 ]
机构
[1] MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
TRENDS IN CHEMISTRY | 2021年 / 3卷 / 05期
关键词
automation; chemical synthesis; continuous flow; optimization;
D O I
10.1016/j.trechm.2021.02.005
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetic chemistry provides access to advanced materials that facilitate innovation in key industries such as medicine, energy, and agriculture. Automation is poised to challenge the traditional process of chemical synthesis and development. Continuous flow chemistry has recently come into maturity and provides a flexible platform amenable to automation. The merger of synthesis and automation promises to democratize access to custom complex small molecules for non experts as well as accelerate the development of new synthetic protocols by relieving expert chemists of routine tasks. In this contribution, we discuss recent case studies that present strategies towards realizing automated synthesis with a further focus on works that leverage continuous flow chemistry as an enabling technology.
引用
收藏
页码:373 / 386
页数:14
相关论文
共 96 条
  • [31] Efficient Kinetic Data Acquisition and Model Prediction: Continuous Flow Microreactors, Inline Fourier Transform Infrared Spectroscopy, and Self-Modeling Curve Resolution
    Fath, Verena
    Lau, Philipp
    Greve, Christoph
    Kockmann, Norbert
    Roeder, Thorsten
    [J]. ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2020, 24 (10) : 1955 - 1968
  • [32] Metal-catalyzed electrochemical diazidation of alkenes
    Fu, Niankai
    Sauer, Gregory S.
    Saha, Ambarneil
    Loo, Aaron
    Lin, Song
    [J]. SCIENCE, 2017, 357 (6351) : 575 - 579
  • [33] A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century
    Godfrey, Alexander G.
    Masquelin, Thierry
    Hemmerle, Horst
    [J]. DRUG DISCOVERY TODAY, 2013, 18 (17-18) : 795 - 802
  • [34] How to approach flow chemistry
    Guidi, Mara
    Seeberger, Peter H.
    Gilmore, Kerry
    [J]. CHEMICAL SOCIETY REVIEWS, 2020, 49 (24) : 8910 - 8932
  • [35] Automated generation of photochemical reaction data by transient flow experiments coupled with online HPLC analysis
    Haas, Christian P.
    Biesenroth, Simon
    Buckenmaier, Stephan
    van de Goor, Tom
    Tallarek, Ulrich
    [J]. REACTION CHEMISTRY & ENGINEERING, 2020, 5 (05) : 912 - 920
  • [36] Synthesis of proteins by automated flow chemistry
    Hartrampf, N.
    Saebi, A.
    Poskus, M.
    Gates, Z. P.
    Callahan, A. J.
    Cowfer, A. E.
    Hanna, S.
    Antilla, S.
    Schissel, C. K.
    Quartararo, A. J.
    Ye, X.
    Mijalis, A. J.
    Simon, M. D.
    Loas, A.
    Liu, S.
    Jessen, C.
    Nielsen, T. E.
    Pentelute, B. L.
    [J]. SCIENCE, 2020, 368 (6494) : 980 - +
  • [37] Hase F., 2020, GRYFFIN ALGORITHM BA
  • [38] Hessel V, 2009, CHEM ENG TECHNOL, V32, P1641, DOI 10.1002/ceat.200990054
  • [39] Rapid multistep kinetic model generation from transient flow data
    Hone, Christopher A.
    Holmes, Nicholas
    Akien, Geoffrey R.
    Bourne, Richard A.
    Muller, Frans L.
    [J]. REACTION CHEMISTRY & ENGINEERING, 2017, 2 (02): : 103 - 108
  • [40] Photoredox Iridium Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self Optimizing Segmented Flow Reactor
    Hsieh, Hsiao-Wu
    Coley, Connor W.
    Baumgartner, Lorenz M.
    Jensen, Klavs F.
    Robinson, Richard I.
    [J]. ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2018, 22 (04) : 542 - 550