Uniform Boundedness and Global Existence of Solutions to a Quasilinear Diffusion Equation with Nonlocal Fisher-KPP Type Reaction Term

被引:1
作者
Tao, Xueyan [1 ]
Fang, Zhong Bo [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 01期
关键词
quasilinear diffusion equation; nonlocal Fisher-KPP reaction; uniform boundedness; global existence; TIME BEHAVIOR;
D O I
10.11650/tjm/200402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the Cauchy problem and Neumann initial boundary value problem for a quasilinear diffusion equation with nonlocal Fisher-KPP type reaction terms. We establish the uniform boundedness and global existence of solutions to the problems by using multipliers technique and modified Moser's iteration argument for some ranges of parameters. Moreover, the ranges of parameters have similar structure to that of the classical critical Fujita exponent.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 41 条
[1]  
Alikakos N., 1979, Communications in Partial Differential Equations, V4, P827, DOI [10.1080/03605307908820113, DOI 10.1080/03605307908820113]
[2]   Coexistence and optimal control problems for a degenerate predator-prey model [J].
Allegretto, W. ;
Fragnelli, G. ;
Nistri, P. ;
Papini, D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :528-540
[3]   LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
ANDERSON, JR .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (01) :105-143
[4]   Asymptotic behaviour of nonlocal reaction-diffusion equations [J].
Anguiano, M. ;
Kloeden, P. E. ;
Lorenz, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) :3044-3057
[5]  
[Anonymous], 2011, LECT NOTES MATH
[6]  
[Anonymous], 1994, Publ Mat
[7]   THERMAL-BEHAVIOR FOR A CONFINED REACTIVE GAS [J].
BEBERNES, J ;
BRESSAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (01) :118-133
[8]   COMPARISON TECHNIQUES AND THE METHOD OF LINES FOR A PARABOLIC FUNCTIONAL-EQUATION [J].
BEBERNES, J ;
ELY, R .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (04) :723-733
[9]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[10]   Global Solutions to a Nonlocal Fisher-KPP Type Problem [J].
Bian, Shen .
ACTA APPLICANDAE MATHEMATICAE, 2017, 147 (01) :187-195