Triviality from the exact renormalization group

被引:15
作者
Rosten, Oliver J. [1 ]
机构
[1] Dublin Inst Adv Studies, Dublin 4, Ireland
关键词
Nonperturbative Effects; Renormalization Group; MANIFESTLY GAUGE-INVARIANT; DERIVATIVE EXPANSION; BETA-FUNCTION; FIELD-THEORY; EQUATIONS; SCHEME; POINT;
D O I
10.1088/1126-6708/2009/07/019
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the exact renormalization group, it is shown that no physically acceptable non-trivial fixed points, with positive anomalous dimension, exist for (i) O(N) scalar field theory in four or more dimensions, (ii) non-compact, pure Abelian gauge theory in any dimension. It is then shown, for both theories in any dimension, that otherwise physically acceptable non-trivial fixed points with negative anomalous dimension are non-unitary. In addition, a very simple demonstration is given, directly from the exact renormalization group, that should a critical fixed point exist for either theory in any dimension, then the n-point correlation functions exhibit the expected behaviour.
引用
收藏
页数:26
相关论文
共 49 条
[2]  
[Anonymous], 1995, QUANTUM THEORY FIELD
[3]   Rapidly converging truncation scheme of the exact renormalization group [J].
Aoki, KI ;
Morikawa, K ;
Souma, W ;
Sumi, JI ;
Terao, H .
PROGRESS OF THEORETICAL PHYSICS, 1998, 99 (03) :451-466
[4]   A generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang-Mills [J].
Arnone, S. ;
Morris, T. R. ;
Rosten, O. J. .
EUROPEAN PHYSICAL JOURNAL C, 2007, 50 (02) :467-504
[5]   Exact scheme independence at two loops [J].
Arnone, S ;
Gatti, A ;
Morris, TR ;
Rosten, OJ .
PHYSICAL REVIEW D, 2004, 69 (06) :13
[6]  
Arnone S, 2005, J HIGH ENERGY PHYS
[7]   A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory [J].
Arnone, S ;
Gatti, A ;
Morris, TR .
PHYSICAL REVIEW D, 2003, 67 (08)
[8]  
Arnone S, 2002, J HIGH ENERGY PHYS
[9]   Exact renormalization group equations: an introductory review [J].
Bagnuls, C ;
Bervillier, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (1-2) :91-157
[10]   SCHEME INDEPENDENCE AND THE EXACT RENORMALIZATION-GROUP [J].
BALL, RD ;
HAAGENSEN, PE ;
LATORRE, JI ;
MORENO, E .
PHYSICS LETTERS B, 1995, 347 (1-2) :80-88