Quantifying the origin of metallic glass formation

被引:140
作者
Johnson, W. L. [1 ]
Na, J. H. [2 ]
Demetriou, M. D. [1 ,2 ]
机构
[1] 138 78 Calif Inst Technol, Dept Mat Sci, Keck Lab Engn, Pasadena, CA 91125 USA
[2] Glassimet Technol Inc, 2670 Walnut St Ave, Pasadena, CA 91107 USA
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
关键词
SUPERCOOLED LIQUID; COOLING RATE; NUCLEATION; ALLOYS; TEMPERATURE; TRANSITION; LANDSCAPE; VISCOSITY; RHEOLOGY;
D O I
10.1038/ncomms10313
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The waiting time to form a crystal in a unit volume of homogeneous undercooled liquid exhibits a pronounced minimum tau(star)(X) at a 'nose temperature' T-star located between the glass transition temperature T-g, and the crystal melting temperature, T-L. Turnbull argued that tau X-star should increase rapidly with the dimensionless ratio t(rg) = T-g/T-L. Angell introduced a dimensionless 'fragility parameter', m, to characterize the fall of atomic mobility with temperature above Tg. Both t(rg) and m are widely thought to play a significant role in determining tau(star)(X). Here we survey and assess reported data for T-L, T-g, t(rg), m and tau X star for a broad range of metallic glasses with widely varying tau(X)star. By analysing this database, we derive a simple empirical expression for tau(star)(X)(t(rg), m) that depends exponentially on t(rg) and m, and two fitting parameters. A statistical analysis shows that knowledge of t(rg) and m alone is therefore sufficient to predict tau(star)(X) within estimated experimental errors. Surprisingly, the liquid/crystal interfacial free energy does not appear in this expression for tau(star)(X).
引用
收藏
页数:7
相关论文
共 51 条
  • [1] Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates
    An, Qi
    Luo, Sheng-Nian
    Goddard, William A., III
    Han, W. Z.
    Arman, B.
    Johnson, William L.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (04)
  • [2] FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS
    ANGELL, CA
    [J]. SCIENCE, 1995, 267 (5206) : 1924 - 1935
  • [3] Borelius G, 1937, ANN PHYS-BERLIN, V28, P0507
  • [4] Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy
    Busch, R
    Bakke, E
    Johnson, WL
    [J]. ACTA MATERIALIA, 1998, 46 (13) : 4725 - 4732
  • [5] ALLOYING EFFECT ON VISCOUS-FLOW IN METALLIC GLASSES
    CHEN, HS
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1978, 29 (02) : 223 - 229
  • [6] GLASS-TRANSITION TEMPERATURE IN GLASSY ALLOYS - EFFECTS OF ATOMIC SIZES AND HEATS OF MIXING
    CHEN, HS
    [J]. ACTA METALLURGICA, 1974, 22 (07): : 897 - 900
  • [7] Christian J. W., 1965, THEORY TRANSFORMATIO
  • [8] A thermodynamic approach to homogeneous nucleation via fluctuations of concentration in binary liquid alloys
    Cini, E
    Vinet, B
    Desré, PJ
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 2000, 80 (04): : 955 - 966
  • [9] LIQUID-GLASS TRANSITION, A FREE-VOLUME APPROACH
    COHEN, MH
    GREST, GS
    [J]. PHYSICAL REVIEW B, 1979, 20 (03): : 1077 - 1098
  • [10] Cooperative shear model for the rheology of glass-forming metallic liquids
    Demetriou, Marios D.
    Harmon, John S.
    Tao, Min
    Duan, Gang
    Samwer, Konrad
    Johnson, William L.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (06)