Learning Entity and Relation Embeddings for Knowledge Graph Completion

被引:0
|
作者
Lin, Yankai [1 ]
Liu, Zhiyuan [1 ]
Sun, Maosong [1 ,2 ]
Liu, Yang [3 ]
Zhu, Xuan [3 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, State Key Lab Intelligent Technol & Syst, Natl Lab Informat Sci & Technol, Beijing, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Language Competenc, Nanjing, Jiangsu, Peoples R China
[3] Samsung R&D Inst China, Beijing, Peoples R China
来源
PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2015年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. In fact, an entity may have multiple aspects and various relations may focus on different aspects of entities, which makes a common space insufficient for modeling. In this paper, we propose TransR to build entity and relation embeddings in separate entity space and relation spaces. Afterwards, we learn embeddings by first projecting entities from entity space to corresponding relation space and then building translations between projected entities. In experiments, we evaluate our models on three tasks including link prediction, triple classification and relational fact extraction. Experimental results show significant and consistent improvements compared to state-of-the-art baselines including TransE and TransH. The source code of this paper can be obtained from https://github.com/mrlyk423/relation_extraction.
引用
收藏
页码:2181 / 2187
页数:7
相关论文
共 50 条
  • [1] Learning Entity Type Embeddings for Knowledge Graph Completion
    Moon, Changsung
    Jones, Paul
    Samatova, Nagiza F.
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2215 - 2218
  • [2] Scalable Learning of Entity and Predicate Embeddings for Knowledge Graph Completion
    Minervini, Pasquale
    Fanizzi, Nicola
    d'Amato, Claudia
    Esposito, Floriana
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 162 - 167
  • [3] Learning Entity and Relation Embeddings for Knowledge Resolution
    Lin, Hailun
    Liu, Yong
    Wang, Weiping
    Yue, Yinliang
    Lin, Zheng
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 345 - 354
  • [4] Translating Embeddings for Knowledge Graph Completion with Relation Attention Mechanism
    Qian, Wei
    Fu, Cong
    Zhu, Yu
    Cai, Deng
    He, Xiaofei
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 4286 - 4292
  • [5] Entity and Entity Type Composition Representation Learning for Knowledge Graph Completion
    Ni, Runyu
    Shibata, Hiroki
    Takama, Yasufumi
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (06) : 1151 - 1158
  • [6] ProjFE: Prediction of fuzzy entity and relation for knowledge graph completion
    Liu, Huajing
    Bai, Luyi
    Ma, Xiangnan
    Yu, Wenting
    Xu, Changming
    APPLIED SOFT COMPUTING, 2019, 81
  • [7] Knowledge Graph Completion Model Based on Entity and Relation Fusion
    Zhengang Z.
    Chuanming Y.
    Data Analysis and Knowledge Discovery, 2023, 7 (02): : 15 - 25
  • [8] Learning Context-based Embeddings for Knowledge Graph Completion
    Fei Pu
    Zhongwei Zhang
    Yan Feng
    Bailin Yang
    Journal of Data and Information Science, 2022, (02) : 84 - 106
  • [9] Learning Context-based Embeddings for Knowledge Graph Completion
    Fei Pu
    Zhongwei Zhang
    Yan Feng
    Bailin Yang
    JournalofDataandInformationScience, 2022, 7 (02) : 84 - 106
  • [10] Learning Context-based Embeddings for Knowledge Graph Completion
    Pu, Fei
    Zhang, Zhongwei
    Feng, Yan
    Yang, Bailin
    JOURNAL OF DATA AND INFORMATION SCIENCE, 2022, 7 (02) : 84 - 106