Advances in plasma-enhanced chemical vapor deposition of silicon films at low temperatures

被引:52
|
作者
Collins, RW [1 ]
Ferlauto, AS
机构
[1] Penn State Univ, Marine Res Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
silicon thin films; amorphous silicon; hydrogenated amorphous silicon; microcrystalline silicon; plasma enhanced chemical vapor deposition; film growth mechanisms;
D O I
10.1016/S1359-0286(02)00095-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The properties of silicon films prepared by plasma-enhanced chemical vapor deposition (PECVD) at low temperatures (<400degreesC are controlled by the physical and chemical processes that occur in the gas phase, at the top-most film surface, within the first several monolayers of the surface, and even well into the film bulk. Recent advances in understanding these processes have led to several new developments in silicon PECVD. The advances include: (i) novel concepts for depositing high-rate, device-quality silicon films, and (ii) deposition phase diagrams for optimizing silicon films for high-stability, high-performance devices. In situ and real time probes of the gas phase, the film surface, and its sub-surface have played key roles in these advances. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:425 / 437
页数:13
相关论文
共 50 条
  • [41] Dependence of Mechanical Stresses in Silicon Nitride Films on the Mode of Plasma-Enhanced Chemical Vapor Deposition
    Novak, A. V.
    Novak, V. R.
    Dedkova, A. A.
    Gusev, E. E.
    SEMICONDUCTORS, 2018, 52 (15) : 1953 - 1957
  • [43] Polymorphous silicon nanowires synthesized by plasma-enhanced chemical vapor deposition
    Zeng, XB
    Liao, XB
    Diao, HW
    Hu, ZH
    Xu, YY
    Zhang, SB
    Chen, CY
    Chen, WD
    Kong, GL
    QUANTUM CONFINED SEMICONDUCTOR NANOSTRUCTURES, 2003, 737 : 667 - 672
  • [44] Modified method of plasma-enhanced chemical vapor deposition of nanocrystalline silicon
    Golubev, VG
    Medvedev, AV
    Pevtsov, AB
    Feoktistov, NA
    TECHNICAL PHYSICS LETTERS, 1998, 24 (10) : 758 - 759
  • [45] PLASMA-ENHANCED CHEMICAL VAPOR-DEPOSITION OF SILICON-NITRIDE
    KOBAYASHI, I
    OGAWA, T
    HOTTA, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1992, 31 (2A): : 336 - 342
  • [46] Optimization of plasma-enhanced chemical vapor deposition of hydrogenated amorphous silicon
    Oversluizen, G
    Lodders, WHM
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (12) : 8002 - 8009
  • [47] Modified method of plasma-enhanced chemical vapor deposition of nanocrystalline silicon
    V. G. Golubev
    A. V. Medvedev
    A. B. Pevtsov
    N. A. Feoktistov
    Technical Physics Letters, 1998, 24 : 758 - 759
  • [48] STRUCTURAL CHARACTERIZATION OF SILICON FILMS DEPOSITED AT LOW-TEMPERATURE BY REMOTE PLASMA-ENHANCED CHEMICAL-VAPOR-DEPOSITION
    LI, XD
    PARK, YB
    KIM, DH
    RHEE, SW
    MATERIALS LETTERS, 1995, 24 (1-3) : 79 - 83
  • [49] LOW HYDROGEN CONTENT STOICHIOMETRIC SILICON-NITRIDE FILMS DEPOSITED BY PLASMA-ENHANCED CHEMICAL VAPOR-DEPOSITION
    PARSONS, GN
    SOUK, JH
    BATEY, J
    JOURNAL OF APPLIED PHYSICS, 1991, 70 (03) : 1553 - 1560
  • [50] Growth and microhardness of SiC films by plasma-enhanced chemical vapor deposition
    Seo, JY
    Yoon, SY
    Niihara, K
    Kim, KH
    THIN SOLID FILMS, 2002, 406 (1-2) : 138 - 144