4D Respiratory Motion-Compensated Image Reconstruction of Free-Breathing Radial MR Data With Very High Undersampling

被引:73
|
作者
Rank, Christopher M. [1 ]
Heusser, Thorsten [1 ]
Buzan, Maria T. A. [2 ,3 ,4 ]
Wetscherek, Andreas [1 ]
Freitag, Martin T. [5 ]
Dinkel, Julien [3 ,6 ,7 ]
Kachelriess, Marc [1 ]
机构
[1] German Canc Res Ctr, Med Phys Radiol, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[2] Iuliu Hatieganu Univ Med & Pharm, Dept Pneumol, Hasdeu Str 6, Cluj Napoca 400371, Romania
[3] Univ Heidelberg Hosp, Dept Diagnost & Intervent Radiol Nucl Med, Amalienstr 5, D-69126 Heidelberg, Germany
[4] Univ Heidelberg Hosp, Dept Diagnost & Intervent Radiol, Neuenheimer Feld 110, D-69120 Heidelberg, Germany
[5] German Canc Res Ctr, Radiol, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[6] TLRC, German Ctr Lung Res DZL, Neuenheimer Feld 430, D-69120 Heidelberg, Germany
[7] Ludwig Maximilians Univ Hosp Munich, Inst Clin Radiol, Marchioninistrasse 15, D-81377 Munich, Germany
关键词
4D MRI; respiratory motion compensation; joint estimation; undersampling; radial sampling; K-T FOCUSS; GENERALIZED RECONSTRUCTION; COMBINATION; STRATEGIES; CT; REGULARIZATION; REGISTRATION; INVERSION; FRAMEWORK; REDUCTION;
D O I
10.1002/mrm.26206
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop four-dimensional (4D) respiratory timeresolved MRI based on free-breathing acquisition of radial MR data with very high undersampling. Methods: We propose the 4D joint motion-compensated highdimensional total variation (4D joint MoCo-HDTV) algorithm, which alternates between motion-compensated image reconstruction and artifact-robust motion estimation at multiple resolution levels. The algorithm is applied to radial MR data of the thorax and upper abdomen of 12 free-breathing subjects with acquisition times between 37 and 41 s and undersampling factors of 16.8. Resulting images are compared with compressed sensing-based 4D motion-adaptive spatio-temporal regularization (MASTeR) and 4D high-dimensional total variation (HDTV) reconstructions. Results: For all subjects, 4D joint MoCo-HDTV achieves higher similarity in terms of normalized mutual information and cross-correlation than 4D MASTeR and 4D HDTV when compared with reference 4D gated gridding reconstructions with 8.4 +/- 1.1 times longer acquisition times. In a qualitative assessment of artifact level and image sharpness by two radiologists, 4D joint MoCo-HDTV reveals higher scores (P < 0.05) than 4D HDTV and 4D MASTeR at the same undersampling factor and the reference 4D gated gridding reconstructions, respectively. Conclusions: 4D joint MoCo-HDTV enables time-resolved image reconstruction of free-breathing radial MR data with undersampling factors of 16.8 while achieving low-streak arti-fact levels and high image sharpness. (C) 2016 International Society for Magnetic Resonance in Medicine
引用
收藏
页码:1170 / 1183
页数:14
相关论文
共 19 条
  • [1] Motion-Compensated Fully 4D PET Reconstruction using PET Data Supersets
    Verhaeghe, J.
    Gravel, P.
    Mio, R.
    Fukasawa, R.
    Rosa-Neto, P.
    Soucy, J. -P.
    Thompson, C. J.
    Reader, A. J.
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 3000 - +
  • [2] Sliding motion compensated low-rank plus sparse (SMC-LS) reconstruction for high spatiotemporal free-breathing liver 4D DCE-MRI
    Qiu, Wenyuan
    Li, Dongxiao
    Jin, Xinyu
    Liu, Fan
    Nguyen, Thanh D.
    Prince, Martin R.
    Wang, Yi
    Spincemaille, Pascal
    MAGNETIC RESONANCE IMAGING, 2019, 58 : 56 - 66
  • [3] High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization
    Zhang, Hua
    Ma, Jianhua
    Bian, Zhaoying
    Zeng, Dong
    Feng, Qianjin
    Chen, Wufan
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (08) : 3313 - 3329
  • [4] Image-based 3D non-rigid respiratory motion correction for free-breathing thoracic MR angiography
    Fei Han
    Cheng Ouyang
    Ziwu Zhou
    Paul J Finn
    Peng Hu
    Journal of Cardiovascular Magnetic Resonance, 18 (Suppl 1)
  • [5] The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study
    Tsoumpas, C.
    Polycarpou, I.
    Thielemans, K.
    Buerger, C.
    King, A. P.
    Schaeffter, T.
    Marsden, P. K.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (06) : 1759 - 1773
  • [6] Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging
    Chandarana, Hersh
    Feng, Li
    Ream, Justin
    Wang, Annie
    Babb, James S.
    Block, Kai Tobias
    Sodickson, Daniel K.
    Otazo, Ricardo
    INVESTIGATIVE RADIOLOGY, 2015, 50 (11) : 749 - 756
  • [7] 4D POSITRON EMISSION TOMOGRAPHY IMAGE RECONSTRUCTION BASED ON BIOMECHANICAL RESPIRATORY MOTION
    Manescu, Petru
    Ladjal, Hamid
    Touileb, Yazid
    Azencot, Joseph
    Beuve, Michael
    Shariat, Behzad
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 99 - 102
  • [8] Free-Breathing 3D Cardiac MRI Using Iterative Image-Based Respiratory Motion Correction
    Moghari, Mehdi H.
    Roujol, Sebastien
    Chan, Raymond H.
    Hong, Susie N.
    Bello, Natalie
    Henningsson, Markus
    Ngo, Long H.
    Goddu, Beth
    Goepfert, Lois
    Kissinger, Kraig V.
    Manning, Warren J.
    Nezafat, Reza
    MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (04) : 1005 - 1015
  • [9] MULTIRESOLUTION RECONSTRUCTION OF REAL-TIME MRI WITH MOTION COMPENSATED COMPRESSED SENSING: APPLICATION TO 2D FREE-BREATHING CARDIAC MRI
    Royuela-del-Val, J.
    Usman, M.
    Cordero-Grande, L.
    Martin-Fernandez, M.
    Simmross-Wattenberg, F.
    Prieto, C.
    Alberola-Lopez, C.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 506 - 509
  • [10] 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography
    Liu, Jiulong
    Zhang, Xue
    Zhang, Xiaoqun
    Zhao, Hongkai
    Gao, Yu
    Thomas, David
    Low, Daniel A.
    Gao, Hao
    INVERSE PROBLEMS, 2015, 31 (11)