High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth

被引:106
作者
Babin, Sergey A. [1 ,2 ]
Zlobina, Ekaterina A. [1 ]
Kablukov, Sergey I. [1 ]
Podivilov, Evgeniy V. [1 ,2 ]
机构
[1] RAS, Inst Automat & Electrometry, SB, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
DISTRIBUTED-FEEDBACK; RANDOM LASER; POWER;
D O I
10.1038/srep22625
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Random Raman lasers attract now a great deal of attention as they operate in non-active turbid or transparent scattering media. In the last case, single mode fibers with feedback via Rayleigh backscattering generate a high-quality unidirectional laser beam. However, such fiber lasers have rather poor spectral and polarization properties, worsening with increasing power and Stokes order. Here we demonstrate a linearly-polarized cascaded random Raman lasing in a polarization-maintaining fiber. The quantum efficiency of converting the pump (1.05 mu m) into the output radiation is almost independent of the Stokes order, amounting to 79%, 83%, and 77% for the 1st (1.11 mu m), 2nd (1.17 mu m) and 3rd (1.23 mu m) order, respectively, at the polarization extinction ratio >22 dB for all orders. The laser bandwidth grows with increasing order, but it is almost independent of power in the 1-10 W range, amounting to similar to 1, similar to 2 and similar to 3 nm for orders 1-3, respectively. So, the random Raman laser exhibits no degradation of output characteristics with increasing Stokes order. A theory adequately describing the unique laser features has been developed. Thus, a full picture of the cascaded random Raman lasing in fibers is shown.
引用
收藏
页数:10
相关论文
共 37 条
[1]   High-efficiency cascaded Raman fiber laser with random distributed feedback [J].
Babin, S. A. ;
Vatnik, I. D. ;
Laptev, A. Yu. ;
Bubnov, M. M. ;
Dianov, E. M. .
OPTICS EXPRESS, 2014, 22 (21) :24929-24934
[2]   Random fiber laser directly pumped by a high-power laser diode [J].
Babin, S. A. ;
Dontsova, E. I. ;
Kablukov, S. I. .
OPTICS LETTERS, 2013, 38 (17) :3301-3303
[3]   Tunable random fiber laser [J].
Babin, S. A. ;
El-Taher, A. E. ;
Harper, P. ;
Podivilov, E. V. ;
Turitsyn, S. K. .
PHYSICAL REVIEW A, 2011, 84 (02)
[4]   Intensity interactions in cascades of a two-stage Raman fiber laser [J].
Babin, SA ;
Churkin, DV ;
Podivilov, EV .
OPTICS COMMUNICATIONS, 2003, 226 (1-6) :329-335
[5]   Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser [J].
Babin, Sergey A. ;
Churkin, Dmitriy V. ;
Ismagulov, Arsen E. ;
Kablukov, Sergey I. ;
Podivilov, Evgeny V. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (08) :1729-1738
[6]  
Baudouin Q, 2013, NAT PHYS, V9, P357, DOI [10.1038/nphys2614, 10.1038/NPHYS2614]
[7]   Internal modulation of a random fiber laser [J].
Bravo, M. ;
Fernandez-Vallejo, M. ;
Lopez-Amo, M. .
OPTICS LETTERS, 2013, 38 (09) :1542-1544
[8]  
Cao H, 2005, OPT PHOTONICS NEWS, V16, P24, DOI 10.1364/OPN.16.1.000024
[9]   Enhancement of laser action in ZnO nanorods assisted by surface plasmon resonance of reduced graphene oxide nanoflakes [J].
Cheng, Shih-Hao ;
Yeh, Yun-Chieh ;
Lu, Meng-Lin ;
Chen, Chun-Wei ;
Chen, Yang-Fang .
OPTICS EXPRESS, 2012, 20 (23) :A799-A805
[10]   Wave kinetics of random fibre lasers [J].
Churkin, D. V. ;
Kolokolov, I. V. ;
Podivilov, E. V. ;
Vatnik, I. D. ;
Nikulin, M. A. ;
Vergeles, S. S. ;
Terekhov, I. S. ;
Lebedev, V. V. ;
Falkovich, G. ;
Babin, S. A. ;
Turitsyn, S. K. .
NATURE COMMUNICATIONS, 2015, 6