Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma

被引:38
|
作者
Behtash, Alireza [1 ]
Cruz-Camacho, C. N. [2 ]
Kamata, Syo [1 ]
Martinez, M. [1 ]
机构
[1] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[2] Univ Nacl Colombia, Sede Bogota, Fac Ciencias, Dept Fis,Grp Fis Nucl, Carrera 45 26-85,Edificio Uriel Gutierrez, Bogota 111321, Colombia
关键词
Boltzmann equation; Thermalization; Kinetic theory; Hydrodynamization; Rheology; Non-newtonian fluids; DYNAMICS; SYSTEMS;
D O I
10.1016/j.physletb.2019.134914
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For the Bjorken flow we investigate the hydrodynamization of different modes of the one-particle distribution function by analyzing its relativistic kinetic equations. We calculate the constitutive relations of each mode written as a multi-parameter trans-series encoding the non-perturbative dissipative contributions quantified by the Knudsen Kn and inverse Reynolds Re-1 numbers. At any given order in the asymptotic expansion of each mode, the transport coefficients get effectively renormalized by summing over all non-perturbative sectors appearing in the trans-series. This gives an effective description of the transport coefficients that provides a new renormalization scheme with an associated renormalization group equation, going beyond the realms of linear response theory. As a result, the renormalized transport coefficients feature a transition to their equilibrium fixed point, which is a neat diagnostics of transient non-Newtonian behavior. As a proof of principle, we verify the predictions of the effective theory with the numerical solutions of their corresponding evolution equations. Our studies strongly suggest that the phenomenological success of fluid dynamics far from local thermal equilibrium is due to the transient rheological behavior of the fluid. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 36 条
  • [1] General framework of the non-perturbative renormalization group for non-equilibrium steady states
    Canet, Leonie
    Chate, Hugues
    Delamotte, Bertrand
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (49)
  • [2] Relation between far-from-equilibrium dynamics and equilibrium correlation functions for binary operators
    Richter, Jonas
    Steinigeweg, Robin
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [3] Thermodynamic length for far-from-equilibrium quantum systems
    Deffner, Sebastian
    Lutz, Eric
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [4] Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy
    Vasseur, Romain
    Karrasch, Christoph
    Moore, Joel E.
    PHYSICAL REVIEW LETTERS, 2015, 115 (26)
  • [5] Fluid dynamics far-from-equilibrium: a concrete example
    Denicol, Gabriel S.
    Noronha, Jorge
    NUCLEAR PHYSICS A, 2021, 1005
  • [6] Loschmidt echo of far-from-equilibrium fermionic superfluids
    Rylands, Colin
    Yuzbashyan, Emil A.
    Gurarie, Victor
    Zabalo, Aidan
    Galitski, Victor
    ANNALS OF PHYSICS, 2021, 435
  • [7] Beyond Turing: far-from-equilibrium patterns and mechano-chemical feedback
    Veerman, Frits
    Mercker, Moritz
    Marciniak-Czochra, Anna
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2213):
  • [8] Far-from-Equilibrium Spin Transport in Heisenberg Quantum Magnets
    Hild, Sebastian
    Fukuhara, Takeshi
    Schauss, Peter
    Zeiher, Johannes
    Knap, Michael
    Demler, Eugene
    Bloch, Immanuel
    Gross, Christian
    PHYSICAL REVIEW LETTERS, 2014, 113 (14)
  • [9] Far-from-equilibrium quantum many-body dynamics
    Gasenzer, Thomas
    Kessler, Stefen
    Pawlowski, Jan M.
    EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (1-2): : 423 - 443
  • [10] Degree of coupling and efficiency of energy converters far-from-equilibrium
    Vroylandt, Hadrien
    Lacoste, David
    Verley, Gatien
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,