An algebra A is said to be zero product determined if every bilinear map f from A x A into an arbitrary vector space X with the property that f (x, y) = 0 whenever xy = 0 is of the form f (x, y) =.(xy) for some linear map : A -> X. It is known, and easy to see, that an algebra generated by idempotents is zero product determined. The main new result of this partially expository paper states that for finite dimensional (unital) algebras the converse is also true. Thus, if such an algebra is zero product determined, then it is generated by idempotents. (C) 2015 Elsevier GmbH. All rights reserved.
机构:
Taiz Univ, Dept Math, Fac Sci, Taizi, Yemen
Univ Putra Malaysia, Fac Sci, Dept Math, Serdang, Selangor, MalaysiaTaiz Univ, Dept Math, Fac Sci, Taizi, Yemen
Ahmed, H.
Bekbaev, U.
论文数: 0引用数: 0
h-index: 0
机构:
Turin Polytech Univ Tashkent TTPU, Dept Nat & Math Sci, Tashkent, UzbekistanTaiz Univ, Dept Math, Fac Sci, Taizi, Yemen
Bekbaev, U.
Rakhimov, I
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol MARA UiTM, Fac Comp & Math Sci, Dept Math, Shah Alam, Malaysia
Uzbek Acad Sci, VI Romanovski Inst Math, Tashkent, UzbekistanTaiz Univ, Dept Math, Fac Sci, Taizi, Yemen
机构:
Univ Santiago de Compostela, Dept Algebra, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Algebra, Santiago De Compostela 15782, Spain
Ladra, M.
Rozikov, U. A.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math, 29 Dormon Yoli Str, Tashkent 100125, UzbekistanUniv Santiago de Compostela, Dept Algebra, Santiago De Compostela 15782, Spain