Infinitely many solutions for Hamiltonian systems

被引:70
作者
Zou, WM [1 ]
Li, SJ
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; resonance; sign-changing potential; Betti number; Morse theory;
D O I
10.1016/S0022-0396(02)00005-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two classes of the second-order Hamiltonian systems with symmetry. If the systems are asymptotically linear with resonance, we obtain infinitely many small-energy solutions by minimax technique. If the systems possess sign-changing potential, we also establish an existence theorem of infinitely many solutions by Morse theory. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:141 / 164
页数:24
相关论文
共 27 条
[1]   Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking [J].
Alama, S ;
DelPino, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (01) :95-115
[2]   SOLUTIONS OF MINIMAL PERIOD FOR A CLASS OF CONVEX HAMILTONIAN-SYSTEMS [J].
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :405-421
[3]  
ANTONACCI F, 1997, NONLINEAR ANAL TMA, V29, P353
[4]   FORCED VIBRATIONS OF SUPERQUADRATIC HAMILTONIAN-SYSTEMS [J].
BAHRI, A ;
BERESTYCKI, H .
ACTA MATHEMATICA, 1984, 152 (3-4) :143-197
[5]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[6]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[7]  
BENCI V, 1980, COMMUN PUR APPL MATH, V33, P147, DOI 10.1002/cpa.3160330204
[8]  
BENNAOUM AK, 1994, J DIFFER EQUATIONS, V112, P209
[9]  
Chang K. C., 1993, INFINITE DIMENSIONAL, DOI DOI 10.1007/978-1-4612-0385-8
[10]  
Ding Y., 1993, Dyn. Syst. Appl, V2, P131