Criteria for the application of high temperature proton conductors in SOFCs

被引:71
|
作者
Schober, T
Krug, F
Schilling, W
机构
关键词
high temperature proton conductors; thermogravimetry; SOFC;
D O I
10.1016/S0167-2738(97)00028-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A critical evaluation of high temperature proton conductors (HTPCs) which might be considered in SOFC applications is presented. A comparison of the conductivities of the best oxygen ion conductors with those of prominent HTPCs shows that a few of the latter may possibly compete in the temperature range 500-700 degrees C. The HTPCs considered here were (a) the classical doped SrCeO3, (b) doped BaCeO3, (c) doped Sr and Ba zirconates, and (d) complex perovskites of type Ba3Ca1.18Nb1.82O9-delta. The compounds favored are those with a high enthalpy of solution of water. Generally, the following materials parameters are desirable: deviation from exact oxygen stoichiometry delta approximate to 0.05; enthalpy of solution of water -Delta H-s greater than or equal to 1.5 eV; effective activation energy for proton transport E-H(eff) < = 0.55 eV and proton transport number t(H) approximate to 1.
引用
收藏
页码:369 / 373
页数:5
相关论文
共 50 条
  • [1] A more efficient anode microstructure for SOFCs based on proton conductors
    Rainwater, Ben H.
    Liu, Mingfei
    Liu, Meilin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) : 18342 - 18348
  • [2] Chemical reactors with high temperature proton conductors as a main component: Progress in the past decade
    Vourros, A.
    Kyriakou, V.
    Garagounis, I.
    Vasileiou, E.
    Stoukides, M.
    SOLID STATE IONICS, 2017, 306 : 76 - 81
  • [3] Development of high strength ferritic steel for interconnect application in SOFCs
    Froitzheim, J.
    Meier, G. H.
    Niewolak, L.
    Ennis, Pt
    Hattendorf, H.
    Singheiser, L.
    Quadakkers, W. J.
    JOURNAL OF POWER SOURCES, 2008, 178 (01) : 163 - 173
  • [4] BIMEVOX materials for application in SOFCS
    Chmielowiec, J.
    Pasciak, G.
    Bujlo, P.
    MATERIALS SCIENCE-POLAND, 2009, 27 (04): : 1251 - 1256
  • [5] Low temperature SOFCs with the ruthenium pyrochlore cathode
    Takeda, T
    Kanno, R
    Tsubosaka, K
    Takeda, Y
    ELECTROCHEMISTRY, 2002, 70 (12) : 969 - 971
  • [6] Preparation of YSZ film by EPD and its application in SOFCs
    Jia, Li
    Lu, Zhe
    Huang, Xiqiang
    Liu, Zhiguo
    Chen, Kongfa
    Sha, Xueqing
    Li, Guoqing
    Su, Wenhui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 424 (1-2) : 299 - 303
  • [7] The Effects of a Filler with a High Coefficient of Thermal Expansion on a Sealant for High-Temperature (750 similar to 850 degrees C) SOFCs
    Kim, Bit Nam
    Lee, Mi Jai
    Hwang, Jong Hee
    Lim, Tae Young
    Kim, Jin Ho
    Hwang, Hae Jin
    Kim, Il Won
    Chung, Woon Jin
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2013, 50 (06) : 470 - 475
  • [8] Catalytic methane decomposition on nickel-based model anodes of SOFCs fabricated on various oxide ion conductors
    Yamaji, Katsuhiko
    Kishimoto, Haruo
    Xiong, Yueping
    Horita, Teruhisa
    Sakai, Natsuko
    Brito, Manuel E.
    Yokokawa, Harumi
    SOLID STATE IONICS, 2008, 179 (27-32) : 1526 - 1530
  • [9] Stability and electrical conductivity of BaCe0.85Tb0.05M0.1O3-δ (M = Co, Fe, Y, Zr, Mn) high temperature proton conductors
    Song, Jian
    Meng, Bo
    Tan, Xiaoyao
    CERAMICS INTERNATIONAL, 2016, 42 (11) : 13278 - 13284
  • [10] High ionic conductivity dysprosium and tantalum Co-doped bismuth oxide electrolyte for low-temperature SOFCs
    P. S. Cardenas-Terrazas
    M. T. Ayala-Ayala
    J. Muñoz-Saldaña
    A. F. Fuentes
    D. A. Leal-Chavez
    J. E. Ledezma-Sillas
    C. Carreño-Gallardo
    J. M. Herrera-Ramirez
    Ionics, 2020, 26 : 4579 - 4586