A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator

被引:124
作者
Smolen, P [1 ]
Baxter, DA [1 ]
Byrne, JH [1 ]
机构
[1] Univ Texas, Sch Med, WM Keck Ctr Neurobiol Learning & Mem, Dept Neurobiol & Anat, Houston, TX 77225 USA
关键词
D O I
10.1016/S0006-3495(02)75249-1
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Although several detailed models of molecular processes essential for circadian oscillations have been developed, their complexity makes intuitive understanding of the oscillation mechanism difficult. The goal of the present study was to reduce a previously developed, detailed model to a minimal representation of the transcriptional regulation essential for circadian rhythmicity in Drosophila. The reduced model contains only two differential equations, each with time delays. A negative feedback loop is included, in which PER protein represses per transcription by binding the dCLOCK transcription factor. A positive feedback loop is also included, in which dCLOCK indirectly enhances its own formation. The model simulated circadian oscillations, light entrainment, and a phase-response curve with qualitative similarities to experiment. Time delays were found to be essential for simulation of circadian oscillations with this model. To examine the robustness of the simplified model to fluctuations in molecule numbers, a stochastic variant was constructed. Robust circadian oscillations and entrainment to light pulses were simulated with fewer than 80 molecules of each gene product present on average. Circadian oscillations persisted when the positive feedback loop was removed. Moreover, elimination of positive feedback did not decrease the robustness of oscillations to stochastic fluctuations or to variations in parameter values. Such reduced models can aid understanding of the oscillation mechanisms in Drosophila and in other organisms in which feedback regulation of transcription may play an important role.
引用
收藏
页码:2349 / 2359
页数:11
相关论文
共 47 条
[1]  
Bae K, 2000, J NEUROSCI, V20, P1746
[2]   Circadian regulation of a Drosophila homolog of the mammalian Clock gene:: PER and TIM function as positive regulators [J].
Bae, K ;
Lee, C ;
Sidote, D ;
Chuang, KY ;
Edery, I .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (10) :6142-6151
[3]   The Drosophila double-times mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA [J].
Bao, S ;
Rihel, J ;
Bjes, E ;
Fan, JY ;
Price, JL .
JOURNAL OF NEUROSCIENCE, 2001, 21 (18) :7117-7126
[4]   Biological rhythms - Circadian clocks limited by noise [J].
Barkai, N ;
Leibler, S .
NATURE, 2000, 403 (6767) :267-268
[5]   Fluctuations and quality of control in biological cells: Zero-order ultrasensitivity reinvestigated [J].
Berg, OG ;
Paulsson, J ;
Ehrenberg, M .
BIOPHYSICAL JOURNAL, 2000, 79 (03) :1228-1236
[6]   Cycling vrille expression is required for a functional Drosophila clock [J].
Blau, J ;
Young, MW .
CELL, 1999, 99 (06) :661-671
[7]   Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock [J].
Cheng, P ;
Yang, YH ;
Liu, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (13) :7408-7413
[8]   Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity [J].
Crosthwaite, SK ;
Dunlap, JC ;
Loros, JJ .
SCIENCE, 1997, 276 (5313) :763-769
[9]   Closing the circadian loop:: CLOCK-induced transcription of its own inhibitors per and tim [J].
Darlington, TK ;
Wager-Smith, K ;
Ceriani, MF ;
Staknis, D ;
Gekakis, N ;
Steeves, TDL ;
Weitz, CJ ;
Takahashi, JS ;
Kay, SA .
SCIENCE, 1998, 280 (5369) :1599-1603
[10]   TEMPORAL PHOSPHORYLATION OF THE DROSOPHILA PERIOD PROTEIN [J].
EDERY, I ;
ZWIEBEL, LJ ;
DEMBINSKA, ME ;
ROSBASH, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2260-2264