An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems

被引:120
作者
Fridman, Emilia [1 ]
Orlov, Yury [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, IL-69978 Tel Aviv, Israel
[2] CICESE Res Ctr, Ensenada 22860, Baja California, Mexico
关键词
Distributed parameter systems; Stability; H-infinity control; Lyapunov functional; LMI; STABILIZATION;
D O I
10.1016/j.automatica.2009.04.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exponential stability analysis and L-2-gain analysis are developed for scalar uncertain distributed parameter systems, governed by semilinear partial differential equations of parabolic and hyperbolic types. Sufficient exponential stability conditions with a given decay rate are derived in the form of Linear Matrix Inequalities (LMIs) for both systems. These conditions are then utilized to synthesize H-infinity static output feedback boundary controllers of the systems in question. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2060 / 2066
页数:7
相关论文
共 50 条
  • [31] Robust Output Feedback Control of a Class of Discrete Fuzzy Systems: An LMI Approach
    He, Guannan
    Ji, Jing
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 3814 - 3819
  • [32] Feedback boundary control of linear hyperbolic systems with relaxation
    Herty, Michael
    Yong, Wen-An
    AUTOMATICA, 2016, 69 : 12 - 17
  • [33] Dynamic Boundary Fuzzy Control Design of Semilinear Parabolic PDE Systems With Spatially Noncollocated Discrete Observation
    Wang, Jun-Wei
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (08) : 3041 - 3051
  • [34] VISCOUS BOUNDARY LAYERS IN HYPERBOLIC-PARABOLIC SYSTEMS WITH NEUMANN BOUNDARY CONDITIONS
    Gues, Olivier
    Metivier, Guy
    Williams, Mark
    Zumbrun, Kevin
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (01): : 181 - 243
  • [35] Boundary feedback control for hyperbolic systems
    Herty, Michael
    Thein, Ferdinand
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [36] Alternative algebraic approach to stabilization for linear parabolic boundary control systems
    Nambu, Takao
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2014, 26 (01) : 119 - 144
  • [37] Alternative algebraic approach to stabilization for linear parabolic boundary control systems
    Takao Nambu
    Mathematics of Control, Signals, and Systems, 2014, 26 : 119 - 144
  • [38] H∞ Control for Continuous-time T-S Fuzzy Systems Using Fuzzy Lyapunov Functions: A LMI Approach
    Chang, Xiao-Heng
    Hong, Liang
    Feng, Yi-Fu
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 2519 - +
  • [39] Fuzzy Boundary Control Design for a Class of Nonlinear Parabolic Distributed Parameter Systems
    Wu, Huai-Ning
    Wang, Jun-Wei
    Li, Han-Xiong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (03) : 642 - 652
  • [40] Exact Observability of Semilinear Multidimensional Wave Equations: an LMI approach
    Fridman, Emilia
    Terushkin, Maria
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 2507 - 2512