Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media

被引:123
作者
Huang, Haibo [1 ]
Li, Zhitao [1 ]
Liu, Shuaishuai [1 ]
Lu, Xi-yun [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
lattice Boltzmann; two-phase flow; relative permeability; Shan-Chen; viscous coupling; immiscible; RELATIVE PERMEABILITY; SIMULATION; STATE; MODEL;
D O I
10.1002/fld.1972
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the Shan-Chen-type (SC) multiphase lattice Boltzmann model was used to study the viscous coupling effects for immiscible two-phase flow in porous media. In the model, any typical equation of state can be incorporated and different contact angles of the gas-liquid interface at a solid wall can be obtained easily through adjusting the 'density of wall' (Benzi et al., Phys. Rein E 2006; 74(2):021509). The viscous coupling effects due to capillary number, the viscosity ratio and the wetting angle were investigated. The two-phase flows with density ratio as high as 56 in porous media were simulated. For different viscosity ratios and wettability, two-phase flow patterns and relative-permeability curves as a function of wetting saturation were obtained. It is observed that when the wetting phase is less viscous and covers the solid surface. the relative permeability of the non-wetting phase may be greater than unity. Here, the SC model is demonstrated as a Suitable tool to Study the immiscible two-phase flow in porous media because it is simple, easy to get the desired contact angle and able to simulate immiscible phase flow with high-density ratio. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:341 / 354
页数:14
相关论文
共 24 条
[1]   GENERALIZED RELATIVE PERMEABILITY COEFFICIENTS DURING STEADY-STATE 2-PHASE FLOW IN POROUS-MEDIA, AND CORRELATION WITH THE FLOW MECHANISMS [J].
AVRAAM, DG ;
PAYATAKES, AC .
TRANSPORT IN POROUS MEDIA, 1995, 20 (1-2) :135-168
[2]   Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle [J].
Benzi, R. ;
Biferale, L. ;
Sbragaglia, M. ;
Succi, S. ;
Toschi, F. .
PHYSICAL REVIEW E, 2006, 74 (02)
[3]   LATTICE BOLTZMANN MODEL OF IMMISCIBLE FLUIDS [J].
GUNSTENSEN, AK ;
ROTHMAN, DH ;
ZALESKI, S ;
ZANETTI, G .
PHYSICAL REVIEW A, 1991, 43 (08) :4320-4327
[4]   A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J].
He, XY ;
Chen, SY ;
Zhang, RY .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :642-663
[5]   Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models [J].
Huang, Haibo ;
Thorne, Daniel T., Jr. ;
Schaap, Marcel G. ;
Sukop, Michael C. .
PHYSICAL REVIEW E, 2007, 76 (06)
[6]   A lattice Boltzmann method for incompressible two-phase flows with large density differences [J].
Inamuro, T ;
Ogata, T ;
Tajima, S ;
Konishi, N .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (02) :628-644
[7]   Displacement of a two-dimensional immiscible droplet in a channel [J].
Kang, QJ ;
Zhang, DX ;
Chen, SY .
PHYSICS OF FLUIDS, 2002, 14 (09) :3203-3214
[8]   Numerical investigations of the steady state relative permeability of a simplified porous medium [J].
Langaas, K ;
Papatzacos, P .
TRANSPORT IN POROUS MEDIA, 2001, 45 (02) :241-266
[9]   Static contact angle in lattice Boltzmann models of immiscible fluids [J].
Latva-Kokko, M ;
Rothman, DH .
PHYSICAL REVIEW E, 2005, 72 (04)
[10]   A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio [J].
Lee, T ;
Lin, CL .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) :16-47