Median Robust Extended Local Binary Pattern for Texture Classification

被引:314
作者
Liu, Li [1 ]
Lao, Songyang [1 ]
Fieguth, Paul W. [2 ]
Guo, Yulan [3 ]
Wang, Xiaogang [4 ]
Pietikainen, Matti [5 ]
机构
[1] Natl Univ Def Technol, Sch Informat Syst & Management, Informat Syst Engn Key Lab, Changsha 410073, Hunan, Peoples R China
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[3] Natl Univ Def Technol, Sch Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
[4] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[5] Univ Oulu, Dept Comp Sci & Engn, Ctr Machine Vis Res, Oulu 90014, Finland
基金
中国国家自然科学基金;
关键词
Texture descriptors; rotation invariance; local binary pattern (LBP); feature extraction; texture analysis; RECOGNITION; OPERATOR;
D O I
10.1109/TIP.2016.2522378
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.
引用
收藏
页码:1368 / 1381
页数:14
相关论文
共 57 条
[1]   Face description with local binary patterns:: Application to face recognition [J].
Ahonen, Timo ;
Hadid, Abdenour ;
Pietikainen, Matti .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :2037-2041
[2]  
Ahonen T, 2009, LECT NOTES COMPUT SC, V5575, P61, DOI 10.1007/978-3-642-02230-2_7
[3]  
Alahi A, 2012, PROC CVPR IEEE, P510, DOI 10.1109/CVPR.2012.6247715
[4]  
[Anonymous], FINN SIGN PROC S
[5]  
[Anonymous], 2013, P 2013 INT C INFORM
[6]  
[Anonymous], 2008, P 19 INT C PATT REC
[7]   On the Occurrence Probability of Local Binary Patterns: A Theoretical Study [J].
Bianconi, Francesco ;
Fernandez, Antonio .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (03) :259-268
[8]  
Brahnam S., 2014, Local Binary Patterns - New Variants and Applications
[9]   Material-specific adaptation of color invariant features [J].
Burghouts, Gertjan J. ;
Geusebroek, Jan-Mark .
PATTERN RECOGNITION LETTERS, 2009, 30 (03) :306-313
[10]   BRIEF: Computing a Local Binary Descriptor Very Fast [J].
Calonder, Michael ;
Lepetit, Vincent ;
Oezuysal, Mustafa ;
Trzcinski, Tomasz ;
Strecha, Christoph ;
Fua, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) :1281-1298