On the Norm of Certain Weighted Composition Operators on the Hardy Space

被引:10
作者
Shaabani, M. Haji [1 ]
Robati, B. Khani [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 71454, Iran
关键词
FRACTIONAL COMPOSITION OPERATORS; BERGMAN SPACES;
D O I
10.1155/2009/720217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a representation for the norm of certain compact weighted composition operator C-psi,C-phi on the Hardy space H-2, whenever phi (z) = az + b and psi(z) = az - b. We also estimate the norm and essential norm of a class of noncompact weighted composition operators under certain conditions on phi and psi. Moreover, we characterize the norm and essential norm of such operators in a special case. Copyright (c) 2009 M. Haji Shaabani and B. Khani Robati.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Extremal non-compactness of composition operators with linear fractional symbol [J].
Basor, Estelle L. ;
Retsek, Dylan Q. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :749-763
[2]   Norms of linear-fractional composition operators [J].
Bourdon, PS ;
Fry, EE ;
Hammond, C ;
Spofford, CH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2459-2480
[3]   Which linear-fractional composition operators are essentially normal? [J].
Bourdon, PS ;
Levi, D ;
Narayan, SK ;
Shapiro, JH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 280 (01) :30-53
[4]   Singular values and Schmidt pairs of composition operators on the Hardy space [J].
Clifford, JH ;
Dabkowski, MG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (01) :183-196
[5]   SUBNORMALITY AND COMPOSITION OPERATORS ON H-2 [J].
COWEN, CC ;
KRIETE, TL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 81 (02) :298-319
[6]  
COWEN CC, 1983, J OPERAT THEOR, V9, P77
[7]   LINEAR FRACTIONAL COMPOSITION OPERATORS ON H-2 [J].
COWEN, CC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (02) :151-160
[8]  
Cowen CC, 1995, STUDIES ADV MATH
[9]   Norms of composition operators with rational symbol [J].
Effinger-Dean, Sean ;
Johnson, Alan ;
Reed, Joseph ;
Shapiro, Jonathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :1062-1072
[10]  
Fang ZS, 2008, ABSTR APPL ANAL, DOI 10.1155/2008/983132