Tunable Schottky Barrier at MoSe2/Metal Interfaces with a Buffer Layer

被引:43
作者
Huang, Le [1 ]
Li, Bo [2 ]
Zhong, Mianzeng [2 ]
Wei, Zhongming [2 ]
Li, Jingbo [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; WORK FUNCTION; MOS2; TRANSISTORS; DIODES; CONTACTS; GRAPHENE;
D O I
10.1021/acs.jpcc.7b00383
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition-metal dichalcogenide monolayers have gained significant attention because of their excellent physical properties and promising applications as a channel material in the next-generation transistors. In this work, we focus on,contacts at the surface of various metals and single-layer MoSe2. Partial Fermi level pinning is demonstrated by the first-principle calculations, which indicates modulation of the electron Schottky barrier. Upon inserting a VS2 layer between MoSe2 layer and metal electrodes, all the n-type contacts at MoSe2/metal interfaces turn into p-type, and the hole Schottky barrier can be tuned effectively by varying metal electrodes: The high work function of the VS2 layer exerts significant influence on the band realignment of MoSe2, making all the n-type contacts at MoSe2/metal interfaces become p-type contacts at MoSe2/VS2-metal interfaces. Variation of the Schottky barriers and band alignments with the work function of metal electrodes demonstrated a partial Fermi level pinning at the interfaces of MoSe2/metal and MoSe2/VS2-metal. The partial Fermi level pinning results-from the low density Of interfacial states, which can be reflected partly by the interaction between MoSe2 layer and metal electrodes. Our results would provide guidelines for designing novel 2D nanoolectronic devices with good performance.
引用
收藏
页码:9305 / 9311
页数:7
相关论文
共 41 条
[1]   High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects [J].
Bao, Wenzhong ;
Cai, Xinghan ;
Kim, Dohun ;
Sridhara, Karthik ;
Fuhrer, Michael S. .
APPLIED PHYSICS LETTERS, 2013, 102 (04)
[2]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/NNANO.2014.25, 10.1038/nnano.2014.25]
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Modulating Carrier Density and Transport Properties of MoS2 by Organic Molecular Doping and Defect Engineering [J].
Cai, Yongqing ;
Zhou, Hangbo ;
Zhang, Gang ;
Zhang, Yong-Wei .
CHEMISTRY OF MATERIALS, 2016, 28 (23) :8611-8621
[5]   Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (24) :13929-13936
[6]   Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
SCIENTIFIC REPORTS, 2014, 4
[7]   Tuning the Electronic and Chemical Properties of Monolayer MoS2 Adsorbed on Transition Metal Substrates [J].
Chen, Wei ;
Santos, Elton J. G. ;
Zhu, Wenguang ;
Kaxiras, Efthimios ;
Zhang, Zhenyu .
NANO LETTERS, 2013, 13 (02) :509-514
[8]   MoS2 P-type Transistors and Diodes Enabled by High Work Function MoOx Contacts [J].
Chuang, Steven ;
Battaglia, Corsin ;
Azcatl, Angelica ;
McDonnell, Stephen ;
Kang, Jeong Seuk ;
Yin, Xingtian ;
Tosun, Mahmut ;
Kapadia, Rehan ;
Fang, Hui ;
Wallace, Robert M. ;
Javey, Ali .
NANO LETTERS, 2014, 14 (03) :1337-1342
[9]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[10]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1