Feature Bagging and Extreme Learning Machines: Machine Learning with Severe Memory Constraints

被引:3
作者
Khan, Kallin [1 ]
Ratner, Edward [1 ,2 ]
Ludwig, Robert [1 ]
Lendasse, Amaury [2 ,3 ]
机构
[1] Edammo Inc, Iowa City, IA 52240 USA
[2] Univ Houston, Dept ILT, Houston, TX USA
[3] Arcada Univ Appl Sci, Helsinki, Finland
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
关键词
ELM; ENSEMBLE; CLASSIFICATION; REGRESSION;
D O I
10.1109/ijcnn48605.2020.9207673
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the onset of easy access to supercomputers with high amounts of memory available, machine learning algorithms have continued to increase the resources necessary to perform their data analysis. This paper aims to show development in the other direction, by showing that through the use of a combination of feature bagging and ensembles of Extreme Learning Machines (ELMs) it is possible to leverage machine learning, without loss of accuracy, on devices where Flash memory is very scarce, and Random-access memory (RAM) is even scarcer, such as on embedded systems. This novel strategy is called Feature Bagged Extreme Learning Machines (FB-ELMs).
引用
收藏
页数:7
相关论文
共 36 条
  • [1] Akusok A, 2014, INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), P711
  • [2] High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications
    Akusok, Anton
    Bjork, Kaj-Mikael
    Miche, Yoan
    Lendasse, Amaury
    [J]. IEEE ACCESS, 2015, 3 : 1011 - 1025
  • [3] Parameter-free image segmentation with SLIC
    Boemer, Fabian
    Ratner, Edward
    Lendasse, Amaury
    [J]. NEUROCOMPUTING, 2018, 277 : 228 - 236
  • [4] Extreme Learning Machines
    Cambria, Erik
    Huang, Guang-Bin
    [J]. IEEE INTELLIGENT SYSTEMS, 2013, 28 (06) : 30 - 31
  • [5] Minimal Learning Machine: A novel supervised distance-based approach for regression and classification
    de Souza Junior, Amauri Holanda
    Corona, Francesco
    Barreto, Guilherme A.
    Miche, Yoan
    Lendasse, Amaury
    [J]. NEUROCOMPUTING, 2015, 164 : 34 - 44
  • [6] Solve Classification Tasks with Probabilities. Statistically-Modeled Outputs
    Gritsenko, Andrey
    Eirola, Emil
    Schupp, Daniel
    Ratner, Edward
    Lendasse, Amaury
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2017, 2017, 10334 : 293 - 305
  • [7] Gritsenko Andrey., 2017, International Conference on Extreme Learning Machine, P304
  • [8] New method for instance or prototype selection using mutual information in time series prediction
    Guillen, A.
    Herrera, L. J.
    Rubio, G.
    Pomares, H.
    Lendasse, A.
    Rojas, I.
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 2030 - 2038
  • [9] Haykin S., 1999, Neural networks: A comprehensive foundation, V2nd
  • [10] Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601