Influence of Spectral Broadening on Nonlinearity Compensation in Ultra-Wideband Optical Fiber Communications

被引:0
作者
Xu, Tianhua [1 ,2 ,3 ]
Ding, Jiazheng [1 ]
Liu, Yifan [2 ]
Hu, Wenxiu [2 ]
Karanov, Boris [3 ,4 ]
Shevchenko, Nikita A. [5 ]
Li, Zhe [6 ]
Liu, Tiegen [1 ]
机构
[1] Tianjin Univ, Tianjin 300072, Peoples R China
[2] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[3] UCL, London WC1E 6BT, England
[4] Nokia Bell Labs, D-70435 Stuttgart, Germany
[5] Univ Cambridge, Cambridge CB3 0FA, England
[6] Finisar Corp, Sunnyvale, CA 94089 USA
来源
2020 22ND INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2020) | 2020年
基金
英国工程与自然科学研究理事会;
关键词
optical fiber communications; Kerr fiber nonlinearities; spectral broadening; digital backpropagation; DISPERSION; PERFORMANCE; SYSTEMS; LIMITS;
D O I
10.1109/icton51198.2020.9203094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical fiber networks form the major part of the modern telecommunication infrastructure and are carrying over 95% of the Internet digital data. The increasing demand for higher data rates has promoted the development of higher-order modulation formats, denser wavelength multiplexing and more powerful signal processing. With the entire suppression of the chromatic dispersion, the polarization mode dispersion and the laser phase noise using digital signal processing, Kerr fiber nonlinearities become the main capacity barrier for optical communication systems, and digital back-propagation is generally applied to overcome such distortions. Kerr effects also result in the broadening of spectra of signals propagating in optical fibers, owing to intra- and inter-channel nonlinear interactions. This report shows that the spectral broadening effect is crucial for achieving an optimal performance of the digital back-propagation in wideband optical transmission systems.
引用
收藏
页数:4
相关论文
共 22 条
  • [1] [Anonymous], 2015, SCI REP-UK, DOI DOI 10.1038/srep13990
  • [2] Electronic dispersion compensation
    Buelow, Henning
    Buchali, Fred
    Klekamp, Axel
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (1-4) : 158 - 167
  • [3] Performance limits in optical communications due to fiber nonlinearity
    Ellis, A. D.
    McCarthy, M. E.
    Al Khateeb, M. A. Z.
    Sorokina, M.
    Doran, N. J.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2017, 9 (03): : 429 - 503
  • [4] Capacity Trends and Limits of Optical Communication Networks
    Essiambre, Rene-Jean
    Tkach, Robert W.
    [J]. PROCEEDINGS OF THE IEEE, 2012, 100 (05) : 1035 - 1055
  • [5] Digital equalization of chromatic dispersion and polarization mode dispersion
    Ip, Ezra
    Kahn, Joseph M.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (08) : 2033 - 2043
  • [6] Karanov B., 2018, P OFC
  • [7] Wired and Wireless Links to Bridge Networks
    Kawanishi, Tetsuya
    Kanno, Atsushi
    Freire, Hugo S. C.
    [J]. IEEE MICROWAVE MAGAZINE, 2018, 19 (03) : 102 - 111
  • [8] DSP for Coherent Single-Carrier Receivers
    Kuschnerov, Maxim
    Hauske, Fabian N.
    Piyawanno, Kittipong
    Spinnler, Bernhard
    Alfiad, Mohammad S.
    Napoli, Antonio
    Lankl, Berthold
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (16) : 3614 - 3622
  • [9] On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission
    Liga, Gabriele
    Xu, Tianhua
    Alvarado, Alex
    Killey, Robert I.
    Bayvel, Polina
    [J]. OPTICS EXPRESS, 2014, 22 (24): : 30053 - 30062
  • [10] Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation
    Ly-Gagnon, DS
    Tsukamoto, S
    Katoh, K
    Kikuchi, K
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) : 12 - 21