Coupled oscillators for modeling and analysis of EEG/MEG oscillations

被引:13
作者
Leistritz, Lutz
Putsche, Peter
Schwab, Karin
Hesse, Wolfram
Suesse, Thomas
Haueisen, Jens
Witte, Herbert
机构
[1] Univ Jena, Fac Med, Inst Med Stat Comp Sci & Documentat, D-07740 Jena, Germany
[2] Univ Jena, Fac Med, Dept Neurol, Biomagnet Ctr, D-07740 Jena, Germany
[3] Tech Univ Ilmenau, Inst Biomed Engn & Informat, D-98684 Ilmenau, Germany
来源
BIOMEDIZINISCHE TECHNIK | 2007年 / 52卷 / 01期
关键词
coupled oscillators; EEG; MEG; model-based signal analysis; parameter identification;
D O I
10.1515/BMT.2007.016
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study presents three EEG/MEG applications in which the modeling of oscillatory signal components offers complementary analysis and an improved explanation of the underlying generator structures. Coupled oscillator networks were used for modeling. Parameters of the corresponding ordinary coupled differential equation (ODE) system are identified using EEG/MEG data and the resulting solution yields the modeled signals. This model-related analysis strategy provides information about the coupling quantity and quality between signal components (example 1, neonatal EEG during quiet sleep), allows identification of the possible contribution of hidden generator structures (example 2, 600-Hz MEG oscillations in somatosensory evoked magnetic fields), and can explain complex signal characteristics such as amplitude-frequency coupling and frequency entrainment (example 3, EEG burst patterns in sedated patients).
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [31] A review of EEG and MEG for brainnetome research
    Xin Zhang
    Xu Lei
    Ting Wu
    Tianzi Jiang
    Cognitive Neurodynamics, 2014, 8 : 87 - 98
  • [32] THE EFFECT OF MUTUAL INFORMATION ON INDEPENDENT COMPONENT ANALYSIS IN EEG/MEG ANALYSIS: A SIMULATION STUDY
    Neumann, A.
    Grosse-Wentrup, M.
    Buss, M.
    Gramann, K.
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2008, 118 (11) : 1534 - 1546
  • [33] Volume conduction effects in EEG and MEG
    van den Broek, SP
    Reinders, F
    Donderwinkel, M
    Peters, MJ
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1998, 106 (06): : 522 - 534
  • [34] A review of EEG and MEG for brainnetome research
    Zhang, Xin
    Lei, Xu
    Wu, Ting
    Jiang, Tianzi
    COGNITIVE NEURODYNAMICS, 2014, 8 (02) : 87 - 98
  • [35] Sensitivity of EEG and MEG to conductivity perturbations
    Acar, CE
    Gençer, NG
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 2834 - 2837
  • [36] Novel multivariate methods to track frequency shifts of neural oscillations in EEG/MEG recordings
    Vidaurre, C.
    Gurunandan, K.
    Idaji, M. Jamshidi
    Noltei, G.
    Gomez, M.
    Villringer, A.
    Mueller, K. -R.
    Nikulin, V. V.
    NEUROIMAGE, 2023, 276
  • [37] Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study
    Weber, Frederik D.
    Supp, Gernot G.
    Klinzing, Jens G.
    Moelle, Matthias
    Engel, Andreas K.
    Born, Jan
    NEUROIMAGE, 2021, 224
  • [38] Manifold-regression to predict from MEG/EEG brain signals without source modeling
    Sabbagh, David
    Ablin, Pierre
    Varoquaux, Gael
    Gramfort, Alexandre
    Engemann, Denis A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space
    Cichy, Radoslaw Martin
    Pantazis, Dimitrios
    NEUROIMAGE, 2017, 158 : 441 - 454
  • [40] Application of Multivariate Analysis to Detect Significant Change in MEG or EEG of Individual Subjects
    Nemoto, Iku
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 1385 - 1388